A hot plate was placed under the ring stand. 50 mL of 3.0 M NaOH in a 250 mL beaker and a stir bar was placed in the beaker. The beaker with NaOH was placed on the hot plate and 3.75 grams of NaAlO2*5H2O was placed in the beaker. The temperature probe was placed in the beaker with the solution, not touching the bottom of the beaker. The solution was heated and stirred till the solution dissolved.
Weighed 1 gram of NaC2H3O2 and mixed it with ionized water. Boiled 12 mL of 1.0M Acetic Acid added into a beaker containing the sodium carbonate on a hot plate until all the liquid is evaporated
Prelab week 1 Calculations Preparation of 1.5μmol/L mixed low-level standard dilution 150μmol/L × V1=1.5μmol/L × 10ml V1=(1.5μmol/L×10ml)/(150μmol/L)=0.1ml Conversion of milliliters to microliters (0.1ml×1000)μL= 100μL Preparation of 3μmol/L mixed low-level standard dilution 150μmol/L × V1=3μmol/L × 10ml V1=(3μmol/L×10ml)/(150μmol/L)=0.2ml Conversion of milliliters to microliters (0.2ml×1000)μL= 200μL Preparation of 3μmol/L mixed low-level standard dilution 150μmol/L × V1=7.5μmol/L × 10ml V1=(7.5μmol/L×10ml)/(150μmol/L)=0.5ml Conversion of milliliters to microliters (0.5ml×1000)μL= 500μL Preparation of the blank samples The volumetric flask will be filled to the mark with 150μmole/L of stock solution to act as blank (reference). Additional two blanks will
= 10^-3 M = 1,000 mL Here C1,C2; are the first and second concentrations of solution V1 and V2 ; are the required and current volumes. The impeller turned on and DDA, and tap water left to be mixed properly with water for 2 minutes. Approximately 150 grams of quartz added into the solution.
In the first part of the experiment, Part A, the standard solutions were prepared. As a whole, the experiment was conducted by four people, however, for Part A, the group was split in two to prepare the two different solutions. Calibrations curves were created for the standard solutions of both Red 40 and Blue 1. Each solution was treated with a serial 2-fold dilution to gain different concentrations of each solution.
Conclusion: Based on the results of molarity from Trials 1, 2, and 3, it is concluded that our experimental for each trial is .410M NaOH, .410M NaOH, and .450M NaOH. The actual molarity of the NaOH concentration used was found to be 1.5M NaOH. The percent error of the results resulted in 72%. The large error may have occurred due to over titration of the NaOH, as the color of the solution in the flask was a darker pink in comparison for the needed faint pink. Discussion of Theory:
Students first prepped for the lab by cleaning out the crucible. Three boiling chips were added in the crucible once it was wiped out with a paper towel. The crucible was then placed on a clay triangle two finger widths above the Fischer burner. After 10 minutes of the crucible being directly under the flame, the it was clean and students allowed time for it to cool down. Next, the students from then on used tongs to transport the crucible from weighing it and back to the clay triangle.
I. Purpose: To experimentally determine the mass and the mole content of a measured sample. II. Materials: The materials used in this experiment a 50-mL beaker, 12 samples, a balance and paper towels. III.
The drop rate was adjusted to 1 to 2 drops/second. 10.0 mL of the NaOH solution was allowed to drip away into a waste beaker. The exact volume of the sodium hydroxide solution used was determined.
A 50 mL buret was obtained and was washed with NaOH solution. After filling the buret with NaOH (titrant) and preparing the KHP (analyte) in the Erlenmeyer flask, the solutions were titrated. The volume used from the NaOH solution was recorded. C. Determination of the Acidity of Soft Drinks First, the soft drinks were heated.
The chemical equation for this experiment is hydrochloric acid + sodium thiosulphate + deionised water (ranging from 25ml to 0ml in 5ml intervals) sodium chloride + deionised water (ranging from 25ml to 0ml in 5ml intervals) + sulphur dioxide + sulphur. As a scientific equation, this would be written out as, NA2S2O3 + 2HCL + H2O (ranging from 25ml to 0ml in
The equation of the reaction between sodium hydroxide and ethanoic acid is as follows: CH3COOH + NaOH → CH3COONa + H2O We can measure the end point of titration process and we can also measure the amount of reactants. The concentration of ethanoic acid in the vinegar can be determined through stoichiometric calculations, Using the values obtained from the titration, and also the chemical equation as a reference. Phenolphthalein indicator is used in this acid-base titration Equipment and materials:
Practical I: Acid-base equilibrium & pH of solutions Aims/Objectives: 1. To determine the pH range where the indicator changes colour. 2. To identify the suitable indicators for different titrations. 3.
Introduction Buffer is a solution that resists a change in pH when bases or acid are added. Solutions that are acidic contain high concentrations of hydrogen ions (H+) and have pH values less than seven. Buffer usually consist of a weak acid, and its conjugate base or a weak base and its conjugate acid. The function of buffer is to resist the changes in hydrogen ion concentration as a result of internal and environmental factor. This buffer experiment is important so that we relies the important of buffer in our life.
That caused a new initial reading of NaOH on the burette (see Table1 & 2). The drops were caused because the burette was not tightened enough at the bottom to avoid it from being hard to release the basic solution for titrating the acid. The volume of the acid used for each titration was 25ml. The volume of the solution was then calculated by subtracting the initial volume from the final volume. We then calculated the average volume at each temperature.