Recommended: Solubility essays
For most sequences at position 4 and 5 we observe only the nucleotides G and T, respectively. There may be rare cases where other nucleotides may also be found. To consider such observations, we need to do a process called additive smoothing or Laplace smoothing to smooth the categorical data. [9] In this case, we add 4 sequences: AAAAAAAAA, CCCCCCCCC, GGGGGGGG, TTTTTTTTT.
Discussion 1. Zn0 (s)+ Cu2+S6+O42-(aq) →Cu0(s) + Zn2+S6+O42-(aq) Zn0(s) → Zn2+(aq) + 2e- Cu2+(aq) + 2e- → Cu0(s) Zn0(s) + Cu2+(aq) → Zn2+(aq) + Cu0(s) Oxidant (oxidizing agent) is the element which reduces in experiment.
Anderson and Wood (1925) determined a magnification value equal to 2800 but they neglected the deformation of the tungsten wire under different equilibrium situations. Conversely, the deformation of the wire could be sufficient to reduce the magnification factor of 30%, increasing the moment of inertia. For this reason Uhrhammer and Collins (1990) and Uhrhammer et al. (1996) recomputed the instrument static magnification (GS) that was estimated equal to 2080 ± 60. Using 2800 instead of 2080 in the BB WA simulations leads to a magnitude error of +0.129 (e.g. Uhrhammer et al., 2011).
Experiment 7 In this experiment we configured several DC circuits consisting of an emf and a network of resistors. The circuits were composed of a power supply, two DMMs, a circuit board, an SPST switch, and an assortment of known resistors along with one unknown resistor. We measured the current and voltage of the entire circuit as well as the potential drops across each resistor to determine the parameters of the circuit including the resistance, voltage, and current for each component.
1. Identify the range of senses involved in communication • Sight (visual communication), Touch (tactile communication), Taste, Hearing (auditory communication), Smell (olfactory communication) 2. Identify the limited range of wavelengths and named parts of the electromagnetic spectrum detected by humans and compare this range with those of THREE other named vertebrates and TWO named invertebrates. Figure 1: the electromagnetic spectrum source: www.ces.fau.edu Vertebrates Human Japanese Dace Fish Rattlesnake Zebra Finch Part of electromagnetic spectrum detected ROYGBV (visible light) detected by light sensitive cells in the eye called rods and cones.
The goal of this experiment was to isolate three different molecules (acidic, basic, and neutral) from a mixture and identify their molecular structure. This was accomplished by using acid/base liquid extraction and H NMR analysis. The neutral component of the unknown mixture #191 was fluorenone. This was evident due to an H NMR spectra that had a high presence of hydrogen signals in the 7.2- 7.7 ppm range. Chemical shift values for fluorenone stated in the lab manual were 7.27, 7.47, 7.48, and 7.6 (CITE), indicating that the corresponding H NMR spectra for the neutral unknown is of this chemical.
Suppose we have a single-hop RCS where there is one AF relay that amplifies the signal received from a transmitter and forwards it to a receiver. Assume that the transmitter sends over the transmitter-to-relay channel a data symbol ${s_k}$, from a set of finite modulation alphabet, $S={S_1, S_2,ldots,S_{cal A}}$, where ${cal A}$ denotes the size of the modulation alphabet. The discrete-time baseband equivalent signal received by the relay, $z_k$, at time $k$ is given by egin{equation} z_k = h_{1,k}s_k + n_{1,k},~~~~for~~k=1,2,ldots,M label{relaySignal} end{equation} where $n_{1,k}sim {cal N}_c(0,sigma_{n1}^2)$ is a circularly-symmetric complex Gaussian noise added by the transmitter-to-relay channel, $h_{1,k}$ denotes the transmitter-to-relay channel, and
Suppose you need to find the fractional European call and the fractional European put options. Let the Hurst parameter be $H=0.85$, the $\sigma=0,25$, $r=0.10$, $S_{fbm} = 100$, $K = 95$, we have \begin{eqnarray*} d_1^{fBm} & = & \frac{\ln{\frac{S}{K}} + \frac{1}{2}(r( T - t) + \frac{(1)\sigma^2{( T^{2H} - t^{2H})}}{2})}{\sigma{\sqrt{T^{2H} - t^{2H}}}}\\ & = & \frac{\ln(\frac{105}{100}) + (0.10(0.25 -0) + \frac{(1){0.25^2}{0.25^{2(0.85)} - (1)0.25^{2(0.85)}}}{2}}{(0.25){\sqrt{0.25^{2(0.85)} - 0}})} \end{eqnarray*} we obtain $d^{fBm}_1= 1.0558$. We find in the normal distribution that $N(1.0558)= 0.8544$ and $N(-1.0558) = 0.1456.$
Results The lab experiment was done in two parts, one with the NAND, NOR, XOR and Hex Inverters and the other with a 7483 full adder gate, both will verify the truth table when two input bits and a carry are added together. The circuits were built by examining the 1 bits through a K-Map to create a Boolean expression for the sum and carry. The Boolean expression for the sum was A⊕B⊕C and the carry as AB+BC_in+AC_in. From these two expressions, we notice that we must use two exclusive-ORs gates in the sum inputs for A, B, and C. For the sum, we have to use NOR and NAND (the only available gates from the lab manual).
The lab started off by measuring critical materials for the lab: the mass of an an empty 100 mL beaker, mass of beaker and copper chloride together(52.30 g), and the mass of three iron nails(2.73 g). The goal of this experiment is to determine the number of moles of copper and iron that would be produced in the reaction of iron and copper(II) chloride, the ratio of moles of iron to moles of copper, and the percent yield of copper produced. 2.00 grams of copper(II) chloride was added in the beaker to mix with 15 mL of distilled water. Then, three dry nails are placed in the copper(II) chloride solution for approximately 25 minutes. The three nails have to be scraped clean by sandpaper to make the surface of the nail shiny; if the nails are not clean, then some unknown substances might accidentally mix into the reaction and cause variations of the result.
K.D.A. Saboia et al. , (2007) have been prepared the Bi4Ti3O12–CaCu3Ti4O12 {[BIT(X)–CCTO(100-X)]} composite powders through solid state reaction method and calcined in the range of 900 to 1020 ºC for 12 h. The as-prepared powders have modified in the form of thick film onto alumina ceramic substrate by utilizing screen printing. At 100 Hz, the value of dielectric constant (κ) of CCTO100 and BIT100 is 316.61 and 53.64 respectively. Conversely, the composite with X=20 % shows an unexpected dielectric constant of 409.71, which is around 20% higher in comparison with the CCTO.
Dehydration of 2-Methylcyclohexanol Sura Abedali Wednesday 2:00 PM January 31, 2018 Introduction: Dehydration reactions are important processes to convert alcohols into alkenes. It is a type of elimination reaction that removes an “-OH” group from one carbon molecule and a hydrogen from a neighboring carbon, thus releasing them as a water molecule (H2O) and forming a pi bond between the two carbons1. In this experiment, 2-methylcyclohexanol undergoes dehydration to form three possible products: methylenecylcohexane, 1-methylcyclohexene, and 3-methylcyclohexene in a Hickman still apparatus. Adding 85% Phosphoric Acid to protonates the “-OH” group, turning it into a better leaving group and initiating the dehydration reaction.
ST Report In the experiment, the problem was the contaminants that were affecting the quality of the water samples. To fix this issue, three scientists had to determine the contaminants that were present in the samples. One sample was from the school sink and the second sample was from an unknown source. The scientists conducted many tests to figure out what pollutants were present in the water.
Acids are proton donors in chemical reactions which increase the number of hydrogen ions in a solution while bases are proton acceptors in reactions which reduce the number of hydrogen ions in a solution. Therefore, an acidic solution has more hydrogen ions than a basic solution; and basic solution has more hydroxide ions than an acidic solution. Acid substances taste sour. They have a pH lower than 7 and turns blue litmus paper into red. Meanwhile, bases are slippery and taste bitter.
Abstract In this experiment, the isolation, characterization, and determination of concentration and purity of deoxyribonucleic acid or DNA from Allium Cepa or onion was performed. DNA was isolated through the use of a homogenizing solution. The absorbance ratio was 1.5, which indicates protein contamination. Moreover, the characterization of its components was conducted through the use of different chemical tests.