ABSTRACT: The purpose of the experiments for week 5 and week 6 support each other in the further understanding of enzyme reactions. During week 5, the effects of a substrate and enzyme concentration on enzyme reaction rate was observed. Week 6, the effects of temperature and inhibitor on a reaction rate were monitored. For testing the effects of concentrations, we needed to use the table that was used in week 3, Cells. The 3 concentrations of enzymes were 0.5 ml, 1.0 ml, and 2.0 ml of turnip extract, while the substrate consisted of 0.1ml, 0.2 ml, and 0.4 ml of hydrogen peroxide. In a separate tube, the control was made up of turnip extract and guaiacol, known as the color reagent. This was recorded the absorbance every 20 seconds for 3 minutes. …show more content…
Without enzymes, the pathways of metabolism would become congested because the chemical reactions would take a very long time. Heat can increase the rate of reaction by allowing reactants to attain the transition state more often, but wouldn’t work well in biological systems. High temperatures denature proteins and will kill them, so instead organisms use catalysis to speed up the reactions. The way an enzyme catalyzes a reaction is by lowering the E_A barrier to enable the reactant molecules to absorb energy to react the transition state even at moderate temperatures. Enzymes can’t make endergonic reactions exergonic. They can only quicken reactions that will eventually occur, but this enables the cell to have a productive metabolism, routing chemicals through metabolic pathways. Enzymes are very specific for the reactions they catalyze; they make sure the chemical processes go in the cell at any given time. Peroxidase was the enzyme being testing in this experiment. A peroxidase is an enzyme that acts as catalysts, which occurs in biological systems. Peroxidase is found in plants, which they play a role in helping to minimize damage caused by stress factors or insect pests. Along with being found in plants, they are also present in liver cells, kidney cells, leukocytes and erythrocytes. For the concentration of enzyme experiment, the hypothesis was if the concentration of an enzyme increases, then the enzyme activity will increase as well. The hypothesis was proven to be true, because there are more enzymes to react with substrates. For the enzyme—factors affecting, the hypothesis concluded was if the temperature increases, than the enzyme activity will increase. This however was proven wrong, because enzymes become unstable at higher temperatures. They enzyme peroxidase can become denatured in