Introduction: In this lab, of water in a hydrate, or a substance whose crystalline structure is bound to water molecules by weak bonds, is determined by heating up a small sample of it. By heating, the water of hydration, or bound water, is removed, leaving only what is called an anhydrous compound. Based on the percent water in the hydrate, it can be classified as one of three types: BaCl2O ⋅ 2H20, with a percent water of about 14.57%, CuSO4 ⋅ 5H2O, which has about 36.0%, and CuCl2 ⋅5H20 (21.17%). Materials: Ring stand, ring clamp, evaporating dish, Bunsen burner, clay triangle, crucible tongs, electronic balance, sample of hydrated salt. Methods: Weight a clean, dry, porcelain evaporating dish on the electric balance and record this mass on an appropriate data table. If the crucible needs to be washed before use, then heat the crucible in the Bunsen burner flame for a few minutes and remove any residual water. Then allow it to cool before continuing. Fill the crucible about 1 gram with the hydrated salt and reweight. Assemble the ring stand, ring, clay triangle, and Bunsen burner …show more content…
In this experiment, the amount of water lost in the 0.99 gram sample of hydrated salt was 0.35 grams, meaning that 35.4% of the salt’s mass was water. The unknown salt’s percent water is closest to that of Copper (II) Sulfate Pentahydrate, or CuSO4 ⋅ 5H2O. The percent error from the accepted percent water in CuSO4 ⋅ 5H2O is 1.67%, since the calculated value came out to be 0.6 less than the accepted value of 36.0%.This lab may have had some issues or sources of error, including the possibility of insufficient heating, meaning that some water may not have evaporated, that the scale was uncalibrated, or that the evaporating dish was still hot while being measured. This would have resulted in convection currents pushing up on the plate and making it seem lighter by lifting it up