Essays
Topics
Writing Tool
Machine Learning AI
ChatGPT
US History
Presidents of the United States
Joseph Robinette Biden
Donald Trump
Barack Obama
US States
States Ranked by Size & Population
States Ranked by Date
IPL
>
Electrical Engineering
>
Unit Step and Impulse Function Practice Problems Explained
Unit Step and Impulse Function Practice Problems Explained
School
Arizona State University
*
*We aren't endorsed by this school
Course
EEE 203
Subject
Electrical Engineering
Date
Dec 10, 2024
Pages
6
Uploaded by ChiefHummingbird4891
Practice problems with unit step
1. Write
x
1
p
t
q
in terms of the unit step function and plot it
x
1
p
t
q “
"
5
,
´
1
ă
t
ă
2
´
3
,
2
ă
t
ă
4
Solution
x
1
p
t
q
=
5
´
u
p
t
`
1
q ´
u
p
t
´
2
q
¯
´
3
´
u
p
t
´
2
q ´
u
p
t
´
4
q
¯
!
"
#
$%
&
$’
(
)
!
*!+
©
Arizona State University
EEE 203, Prof. A. Papandreou-Suppappola
1
2. Write
x
2
p
t
q
in terms of the unit step function and plot it
x
2
p
t
q “
"
5
´
2
ă
t
ă
1
´
2
t
`
1
,
1
ă
t
ă
1
.
5
Solution
x
2
p
t
q
=
5
`
u
p
t
`
2
q ´
u
p
t
´
1
q
˘
` p
1
´
2
t
q
`
u
p
t
´
1
q ´
u
p
t
´
1
.
5
q
˘
!
%
#
$"
&
%,&
%
$%
)
#
*!+
$"
©
Arizona State University
EEE 203, Prof. A. Papandreou-Suppappola
2
3. Plot the following signal:
x
3
p
t
q
=
u
p
t
´
2
q ´
u
p
t
`
1
q `
2
u
p´
t
q
!"# $ %&
#
%
’
$(
(
%
’
$(
$!"# ) (&
#
%
’
$(
%
%!"$#&
#
%
’
$(
#
%
+
!
#
(
$(
©
Arizona State University
EEE 203, Prof. A. Papandreou-Suppappola
3
Practice problems with unit impulse function
1. Evaluate the the following integrals
(a)
ż
8
´
5
`
u
p
t
q ´
u
p
t
´
3
q
˘
δ
p
t
`
2
q
d
t
Solution:
ż
8
´
5
`
u
p
t
q ´
u
p
t
´
3
q
˘
δ
p
t
`
2
q
d
t
=
ż
3
0
δ
p
t
`
2
q
d
t
=
0
(b)
ż
8
´
5
`
u
p
t
q ´
u
p
t
´
3
q
˘
δ
p
t
´
2
q
d
t
Solution:
ż
8
´
5
`
u
p
t
q ´
u
p
t
´
3
q
˘
δ
p
t
´
2
q
d
t
=
ż
3
0
δ
p
t
´
2
q
d
t
=
1
(c)
ż
5
´
1
.
5
t
3
δ
p
t
`
1
q
d
t
Solution:
ż
5
´
1
.
5
t
3
δ
p
t
`
1
q
d
t
=
p´
1
q
3
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✿
1
ż
5
´
1
.
5
δ
p
t
`
1
q
d
t
=
´
1
©
Arizona State University
EEE 203, Prof. A. Papandreou-Suppappola
4
2. Plot the signal
x
p
t
q
=
y
1
p
t
q `
y
2
p
t
q `
y
3
p
t
q
=
5
δ
p
t
`
2
q ` p
t
´
1
q
`
u
p
t
q ´
u
p
t
´
2
q
˘
´
δ
p
t
´
0
.
5
q
!
"
#
$"
%
&
$&
’(!)
$&
#*%
Important point
At
t
=
0
.
5
,
y
2
p
t
q
and
y
3
p
t
q
do not add up since
y
3
p
0
.
5
q ‰ ´
1
Only area is -1 since, by definition,
y
3
p
t
q “ ´
δ
p
t
´
0
.
5
q
"
0
,
t
‰
0
.
5
undefined
,
t
“
0
.
5
and area is
ż
8
´8
p´
1
q
δ
p
t
´
0
.
5
q
d
t
=
´
1
©
Arizona State University
EEE 203, Prof. A. Papandreou-Suppappola
5
3. Plot
x
r
n
s
=
5
δ
r
n
`
2
s ` r
n
`
1
s
`
u
r
n
s ´
u
r
n
´
3
s
˘
´
δ
r
n
´
1
s
+
"
#
$"
%
&
$&
’,+-
.
&
We can also write
x
r
n
s
as
x
r
n
s “
5
δ
r
n
`
2
s `
´
δ
r
n
s `
2
δ
r
n
´
1
s `
3
δ
r
n
´
2
s
¯
´
δ
r
n
´
1
s
“
5
δ
r
n
`
2
s `
δ
r
n
s `
δ
r
n
´
1
s `
3
δ
r
n
´
2
s
since, by definition,
´
δ
r
n
´
1
s
=
"
´
1
,
n
“
1
0
,
n
‰
1
©
Arizona State University
EEE 203, Prof. A. Papandreou-Suppappola
6