Calculating Radiative Heat and Emittance for Rocket Surfaces

School
University of Michigan**We aren't endorsed by this school
Course
ME 530
Subject
Mechanical Engineering
Date
Dec 10, 2024
Pages
6
Uploaded by BarristerWalrusPerson1195
Akshita Arora UM ID: 90734592 ME 530 HW-2 1)L = 20 m, D = 2m, d = 140*106km = 14*1010m, Tsun= 5777 K, Rsun= 696*103km a)Solid angle with which the sun is seen from the rocket: Ξ© =𝐴??? ?????????(????????)2=πœ‹π‘…π‘ π‘’π‘›2?2=πœ‹(696βˆ—103)2(140βˆ—106)2= 7.76 Γ— 10βˆ’5???b)Radiative flux (W m-2) incident on the rocket surface: ? = Ω𝜎????4πœ‹= 7.76 Γ— 10βˆ’5Γ— 5.67 Γ— 10βˆ’8Γ— 57774/πœ‹ = 1559.9 ?/?2Total radiative heat received by rocket: ?. (????π‘Ž?? 𝐴??π‘Ž)??????= 1559.9 (πœ‹?? +πœ‹π·22) = 2.1 βˆ— 105?Flux with respect to surface area of rocket: ?β€²= ?πœ‹?? +πœ‹?22πœ‹????2= 1.35 βˆ— 10βˆ’13?/?2c)If the rocket surface could be assumed to be a blackbody, the equivalent surface rocket temperature can be calculated as follows: ? = 𝜎???????4β‡’ ???????= (?𝜎)14= (1559.95.67 Γ— 10βˆ’8)14= 407.26 ?2)The spectral directional emittance (Ξ΅πœ†β€²) is given as: πœ€πœ†β€²= {0.9 cosΞΈ for Ξ» < 2 ΞΌm0.2 for Ξ» > 2 ΞΌmHemispherical spectral emittance is given by: πœ€πœ†= 2 ∫ πœ€β€²πœ†???πœƒ?𝑖?πœƒ?πœƒ ={2 ∫0.9(???πœƒ)2?𝑖?πœƒ?πœƒ for Ξ» < 2 ΞΌmπœ‹202 ∫ 0.2???πœƒ?𝑖?πœƒ?πœƒπœ‹20for Ξ» > 2 ΞΌmπœ‹20={2 Γ— 0.9???πœƒ?𝑖?3πœƒ3|0πœ‹2for Ξ» < 2 ΞΌm2 Γ— 0.2?𝑖?2πœƒ2|0πœ‹2for Ξ» > 2 ΞΌm= {0.6 for Ξ» < 2 ΞΌm0.2 for Ξ» > 2 ΞΌmThe total, hemispherical emittance is: πœ€ =1𝜎?????4∫ πœ€πœ†??πœ†(?????)?πœ† =∞0πœ€πœ†<2∫ ??πœ†(?????)?πœ† + πœ€πœ†>2∫??πœ†(?????)?πœ†βˆž220∫??πœ†(?????)?πœ†βˆž0= 0.6?(2 Β΅? Γ— 500 ?) + 0.2(1 βˆ’ ?(2 Β΅? Γ— 500 ?)) = 0.2001According to Kirchoff’s Law: πœ€β€²πœ†= π›Όβ€²πœ†The directional absorptance (Ξ±β€²) is calculated as:
Background image
Akshita Arora UM ID: 90734592 𝛼′=1????∫ π›Όβ€²πœ†????,πœ†?πœ†βˆž0=1𝜎????4∫ π›Όβ€²πœ†??πœ†(????)?πœ†βˆž0=1𝜎????4∫ π›Όβ€²πœ†??πœ†(????)?πœ† =∞0πœ€πœ†<2∫ ??πœ†(????)?πœ† + πœ€πœ†>2∫??πœ†(????)?πœ†βˆž220∫??πœ†(????)?πœ†βˆž0= 0.9???πœƒ Γ— 0.9396 + 0.2 Γ— (1 βˆ’ 0.9396) = 0.8456???πœƒ + 0.0121The maximum absorption occurs when cosπœƒ= 1, which is when πœƒ= 0Β° (normal incidence). At this angle: 𝛼??π‘₯β€²= Ξ±β€²(0) =1????∫ π›Όβ€²πœ†????,πœ†?πœ†βˆž0= 0.9 Γ— 0.9396 + 0.2 Γ— (1 βˆ’ 0.9396) = 0.8577At ΞΈ= 0, the maximum absorption is: ?abs,max= Ξ±β€²(0)?sol= 0.8577 Γ— 1367 = 1172.503W?βˆ’2Net absorbed heat flux: ?net= Ξ΅??βˆ’ Ξ±β€²(πœƒ)?sol???πœƒ (?net< 0 ??? ?????𝑦 ?????????)The net absorbed heat flux should be at least 40% of the maximum absorption: |?net| β‰₯ |0.4 Γ— ?net,ΞΈ = 0| = |0.4(Ξ΅??βˆ’ ?abs,max)|= |0.4(708.75 βˆ’ 1172.503)| = 185.5012W?βˆ’2β‡’ (0.8456???πœƒ + 0.0121)1367???πœƒ βˆ’ Ρσ?????4β‰₯ 185.5012 β‡’ (1155.9???2πœƒ + 17.4976???πœƒ) βˆ’ 894.2512 β‰₯ 0 ∴ ???πœƒ β‰₯ 0.872 β‡’ πœƒ ≀ 29.308?Thus, the range of sun positions for which the net absorbed heat flux is at least 40% of the maximum is: θ∈[0∘,29.31∘] 3)Net radiosity balance equation: ??β€²β€²πœ€?βˆ’ βˆ‘ (1πœ€?βˆ’ 1) ?????β€²β€²+ 𝐻0?= ???βˆ’ βˆ‘ ??????𝑁?=1𝑁?=1Given: πœ€1= πœ€2= πœ€4= πœ€5= 1, πœ€3= 0.5?3= 400 ?, ?1= 1500 ??4= ?5= 0Using Appendix D in Modest’ textbook: j i 1 3 4 5 1 0 0.0557 0.2071 0.0290 3 0.0557 0 0.0290 0.2071 4 0.8284 0.1159 0.5858 0.1781 5 0.1159 0.8284 0.1781 0.5858 The following equations were used to calculate view factors: ???𝐴?= ???𝐴?For 2 co-axial parallel disks: ?1βˆ’3=12{? βˆ’ [?2βˆ’ 4]1 2⁄},π‘€β„Ž??? ? =2𝑅2+1𝑅2, ? =520?1βˆ’4=12{1 βˆ’ ?2βˆ’ 𝐻2+ [(1 + ?2+ 𝐻2)2βˆ’ 4?2]1 2⁄},π‘€β„Ž??? ? = 1, 𝐻 =105?4βˆ’4= 1 + 𝐻 βˆ’ [1 + 𝐻2]1 2⁄,π‘€β„Ž??? 𝐻 =1010
Background image
Akshita Arora UM ID: 90734592 ?5βˆ’1=14{(1 +𝐻2𝐻1) [4 + (𝐻1+ 𝐻2)2]1 2β„βˆ’ (𝐻1+ 2𝐻2) βˆ’π»2𝐻1(4 + 𝐻22)1 2⁄}If H1= H2= H: ?1βˆ’2=14{4(1 + 𝐻2)1 2β„βˆ’ 3𝐻 βˆ’ (4 + 𝐻2)1 2⁄},π‘€β„Ž??? 𝐻 =105Radiosity balance equation for surface 1: ?1β€²β€²βˆ’ (1πœ€3βˆ’ 1) ?13?3β€²β€²= ??1βˆ’ (?11??1+ ?13??3+ ?14??4+ ?15??5)β‡’ ?1β€²β€²βˆ’ ?13?3β€²β€²= ??1βˆ’ (?13??3+ ?14??4+ ?15??5)β‡’ ?1β€²β€²βˆ’ ?13?3β€²β€²= 𝜎?14βˆ’ 𝜎(?13?34+ ?14?44+ ?15?54)Radiosity balance equation for surface 3: ?3β€²β€²πœ€3βˆ’ (1πœ€3βˆ’ 1) ?33?3β€²β€²= ??3βˆ’ (?31??1+ ?33??3+ ?34??4+ ?35??5)β‡’ 2?3β€²β€²= ??3βˆ’ (?31??1+ ?34??4+ ?35??5) β‡’ 2?3β€²β€²= 𝜎?34βˆ’ 𝜎(?31?14+ ?34?44+ ?35?54)Radiosity balance equation for surface 4: ?4β€²β€²βˆ’ (1πœ€3βˆ’ 1) ?43?3β€²β€²= ??4βˆ’ (?41??1+ ?43??3+ ?44??4+ ?45??5)β‡’ βˆ’?43?3β€²β€²= 𝜎(1 βˆ’ ?44)?44βˆ’ 𝜎(?41?14+ ?43?34+ ?45?54)Radiosity balance equation for surface 5: ?5β€²β€²βˆ’ (1πœ€3βˆ’ 1) ?53?3β€²β€²= ??5βˆ’ (?51??1+ ?53??3+ ?54??4+ ?55??5)β‡’ βˆ’?53?3β€²β€²= 𝜎(1 βˆ’ ?55)?54βˆ’ 𝜎(?51?14+ ?53?34+ ?54?44)System of equations: [1βˆ’?13?14?1502?34?350βˆ’?43βˆ’(1 βˆ’ ?44)?450βˆ’?53?54βˆ’(1 βˆ’ ?55)][?1β€²β€²?3β€²β€²πœŽ?44𝜎?54]=[𝜎?14βˆ’ 𝜎?13?34𝜎?34βˆ’ 𝜎?31?14βˆ’πœŽ(?41?14+ ?43?34)βˆ’πœŽ(?51?14+ ?53?34)]Solving the above in MATLAB: ?1β€²β€²= 84579.64 ?/?2, ?3β€²β€²= βˆ’84579.64 ?/?2, ?4= 1398.3 ?,?5= 1288.6 ? 4)Given: dp= 0.3 mm D12= 1.5 mm Analytical expression for view factor from one sphere to another sphere is given as , In our case, R = 1, S = 8 a)F12from analytic expression: F12= 0.0025 F12from code for 1e7 rays: F12= 0.0029 The relative error between analytical and MCRT for 1e7 rays: 13.7821%
Background image
Akshita Arora UM ID: 90734592 Figure 1: Plot of view factor (left) and relative error (right) vs no. of rays b)Methodology followed for inserting a new sphere between the two spheres that is located midway between the first two spheres: β€’Sphere 3 is added at D13= D12/2. Its position is modified based on the viewing angle Ξ±. β€’For each Ξ±, the position of Sphere 3 is shifted, and ray tracing is performed. β€’Rays from Sphere 1 are checked first for intersections with Sphere 3. If a ray hits Sphere 3, it is not allowed to reach Sphere 2. Otherwise, the intersection check proceeds to Sphere 2. The modified MATLAB code is given below:
Background image
Akshita Arora UM ID: 90734592
Background image
Akshita Arora UM ID: 90734592 β€’For Ξ±=0Β°, all rays between Sphere 1 and Sphere 2 are blocked by Sphere 3, so F12=0. β€’For small angles Ξ±=5∘,15∘: As the angle increases, Sphere 3 allows some radiation to reach Sphere 2, increasing F12. β€’For larger angles Ξ±=30∘, The view factor F12 continues to increase because Sphere 3 obstructs less of the radiation path from Sphere 1 to Sphere 2. β€’At Ξ±=60Β°, spheres 2 and 3 are equidistant from sphere 1, resulting in an equal view factor, i.e. F12=F13. Figure 2: Plot of view factor vs viewing angle for F12 and F13.
Background image