Understanding Gradient, Divergence, and Curl in Functions
School
Technological University of Mexico**We aren't endorsed by this school
Course
ALGEBRA SUPER
Subject
Geography
Date
Dec 11, 2024
Pages
2
Uploaded by jorgeozca
1. Conteste la siguiente pregunta. ¿Es válido aplicar el gradiente y obtener un resultado de las siguientes funciones?a)Se puede aplicar el gradiente puesto que es una función y se tiene que derivar cada una de sus variables el gradiente quedaría de la siguiente manera:b) No se podría por que ya es un vector la función Justifique sus resultados. En caso de que si, determine ∇𝑓𝑓, en caso de que no, explique por qué2. Sea la siguiente función Determine en los puntos (1,1,1)a)Divergencia de la función
b)Rotacional de la función Fuentes de consulta:Ingeniosos. (2020, 6 abril). GRADIENTE, DIVERGENCIA y ROTACIONAL 😉¿Qué son y cómo calcularlos?[Vídeo]. YouTube. https://www.youtube.com/watch?v=A5HhXty0x6Uteoriaelectromagneticated502 / Operadores Diferenciales:Gradiente, divergencia y rotacional. (s. f.). http://teoriaelectromagneticated502.pbworks.com/w/page/20548734/Operadores%20Diferenciales:Gradiente,%20divergencia%20y%20rotacionalValdiviezo, M. (2021, 5 febrero). Semana 14: Gradiente, divergencia y rotacional[Diapositivas]. SlideShare. https://www.slideshare.net/slideshow/semana-14-gradiente-divergencia-y-rotacional/242323193