Understanding First and Second Order Control Systems
School
McMaster University**We aren't endorsed by this school
Course
SFWR ENG 4AA4
Subject
Electrical Engineering
Date
Dec 11, 2024
Pages
24
Uploaded by ChancellorPorcupinePerson766
Real Time Systems and Control ApplicationsContentsFirst Order SystemsSecond Order SystemsFall, 2024Prof. Wenbo He@CAS, McMaster1
Time Constant of First Order Systemsβ’First order systemβ’The output of a general first order system to a step input: πππ π =πππ π πΊπΊ(π π ) =πππ π π π +ππβ’This results in a time domain output given by: yπ‘π‘= 1β ππβπππ‘π‘, where parameter ππis the only parameter that affects the output.π‘π‘=1ππ, yπ‘π‘= 0.63.1ππis the time constant of the response, and is the time it takes for the step response to rise to 63% of its final value.Fall, 2024Prof. Wenbo He@CAS, McMaster2πππ π + aX(s)=1π π Y(s)G(s)
Response in Time Domainβ’Rise Time (ππππ): time for the waveform to go from 0.1 to 0.9 of its final value. For first order systems: ππππ=2.2ππβ’Settling Time (πππ π ): time for the response to reach and stay within 2% of its final value. For first order systems: πππ π =4ππFall, 2024Prof. Wenbo He@CAS, McMaster3
Another First Order Response Exampleβ’Give πΊπΊπ π =1π π +ππ, what is the time constant, rise time, and settling time?β’Yπ π =1ππ1sβ1π π +ππβ π¦π¦π‘π‘=1ππ(1β ππβπππ‘π‘)Solution:β’Timeconstantππmakes π¦π¦ππ=1ππβ0.63, so ππ=1ππβ’Rise time π‘π‘ππ=π‘π‘2β π‘π‘1, where π‘π‘2makes π¦π¦π‘π‘2=1ππβ0.9and π‘π‘1makes π¦π¦π‘π‘1=1ππβ0.1, hence π‘π‘ππ=2.3β0.1ππ= 2.2β1ππβ’Settling time π‘π‘π π makes π¦π¦π‘π‘π π =0.981ππ, hence π‘π‘π π β 4ππFall, 2024Prof. Wenbo He@CAS, McMaster4
More ExampleThe figure shows the response of three first order systems having transfer function πΎπΎπ π +ππ, where the values of K are different for the three systems. Answer the following questions:β’1. Which of the three curves (1, 2, 3) represents a system with the lowest time constant?β’2. The big dots on the three graphs represent the time when the response settles within 2% of the final value. Find the transfer function for each of the three systems. Fall, 2024Prof. Wenbo He@CAS, McMaster5
SolutionFall, 2024β’The settling time for first order systems is given by Ts=4ππ.β’From the figure, the values of Tsare 7.8, 3.9 and 0.8 respectively, so the value ππfor 3 systems are roughly 0.5, 1.0 and 5 respectively.Since the steady state value of each system is 1, so K=a. Therefore the transfer function of the systems are 0.5π π +0.5, 1π π +1, and 5π π +5.Prof. Wenbo He@CAS, McMaster6
Second Order Systemsβ’Most real-world systems are not first order systems. A general second order system defined by the transfer function:πΊπΊ(π π ) =πππ π 2+πππ π +ππβ’Find the poles of this transfer function to examine the behaviour of the output response. Using quadratic formula:π π 1,π π 2=βππΒ±ππ2β4b2Fall, 2024Prof. Wenbo He@CAS, McMaster7
A Special Case (a=0)β’If a = 0, the transfer function is Gs=πππ π 2+ππ, and the poles will have only imaginary part Β±ππππand by definition the natural frequencyππππ=ππis the frequency of oscillation of this system.Fall, 2024Prof. Wenbo He@CAS, McMaster8Undamped Case
Damping Coefficient ΞΆ, whenππis not zeroβ’The complex poles have a real part Ο=βππ2.β’The magnitude of Οis called the exponential decay frequency, and ππππthe natural frequency. We define the Damping Ratio or Damping Coefficient, ππasΞΆ=πΈπΈπΈπΈπΈπΈπΈπΈπΈπΈπππΈπΈπ‘π‘πΈπΈπππΈπΈ πππππππππ¦π¦ πππππππππππππΈπΈπππ¦π¦πππππ‘π‘πππππππΈπΈ πππππππππππππΈπΈπππ¦π¦β΄ΞΆ=|Ο|ππππ=ππ2πππππ π πΈπΈ π‘π‘π‘πππ‘π‘ ππ= 2ΞΆππππFall, 2024Prof. Wenbo He@CAS, McMaster9
General Second Order Transfer Function β’The general second order transfer function can now be written as:Gs=ππππ2π π 2+ 2ΞΆπππππ π +ππππ2π π 1,π π 2=βΞΆππππΒ±ππππΞΆ2β1β’From above we can examine the effect of parameter ΞΆon the output of a second order system.Fall, 2024Prof. Wenbo He@CAS, McMaster10
Effect Of Parameter ΞΆFall, 2024Prof. Wenbo He@CAS, McMaster11
Summary of Observationsβ’Two imaginary poles at Β±ππππππ: ΞΆ= 0 (undamped)Natural response: undamped sinusoid of frequency ππππequal to the imaginary part of the poles. Or πππ‘π‘=π΄π΄cos(πππππ‘π‘ β ππ)β’Two complex poles at ΟππΒ±ππππππ:0 <ΞΆ< 1 (underdamped)Natural response: Underdamped response in the form of sinusoid with an exponential envelope whose time constant is equal to the reciprocal of the pole's real part. Or πππ‘π‘=π΄π΄ ππ(βππππ)π‘π‘cos(πππππ‘π‘ β ππ), where ππππ=ππππ1βΞΆ2.Fall, 2024Prof. Wenbo He@CAS, McMaster12
Continuedβ¦β’Two real poles at Ο1: ΞΆ= 1 (critically damped)Natural response: critically damped system has the time domain response as:πππ‘π‘=πΎπΎπ‘π‘ππΟ1π‘π‘β’Two real poles at Ο1and Ο2: ΞΆ> 1 (overdamped)Natural response: overdamped with two exponentials having timeconstants equal to the reciprocal of the pole locations. Orπππ‘π‘=πΎπΎ(ππΟ1π‘π‘+ππΟ2π‘π‘)Fall, 2024Prof. Wenbo He@CAS, McMaster13
Second Order Impulse ResponseFall, 2024Prof. Wenbo He@CAS, McMaster14
Underdamped Second Order Step Responseβ’The general Transfer Function of a second order system is:Gs=ππππ2π π 2+ 2ΞΆπππππ π +ππππ2β’Consider response for a step input. The transfer function of response C(s) is given by:Cs=ππππ2π π (π π 2+ 2ΞΆπππππ π +ππππ2)β’Taking the inverse LT to get response in time domain results in:πππ‘π‘= 1β11βΞΆ2ππβΞΆπ€π€πππ‘π‘cos(1βΞΆ2πππππ‘π‘+ππ)where ππ=π‘π‘πππΈπΈβ1(ΞΆ1βΞΆ2).Fall, 2024Prof. Wenbo He@CAS, McMaster15
Fall, 2024Prof. Wenbo He@CAS, McMaster16
Peak Time, TpThe time required to reach the first or maximum peak. This can be found by differentiating c(t), and equating to zero which gives:ππππ=ππππππ1βΞΆ2Because cβ(t)= β11βΞΆ2ππβΞΆπ€π€πππ‘π‘sin1βΞΆ2πππππ‘π‘+ππ1βΞΆ2ππππβ11βΞΆ2βΞΆππππππβΞΆπ€π€πππ‘π‘cos1βΞΆ2πππππ‘π‘+ππ= 0β΄π‘π‘πππΈπΈ1βΞΆ2πππππ‘π‘+ππ=ΞΆ1βΞΆ2Therefore, 1βΞΆ2πππππ‘π‘=ππο¨ππππ=ππππππ1βΞΆ2Fall, 2024Prof. Wenbo He@CAS, McMaster17πππ‘π‘= 1β11βΞΆ2ππβΞΆπ€π€πππ‘π‘cos(1βΞΆ2πππππ‘π‘+ππ)ππ=π‘π‘πππΈπΈβ1(ΞΆ1βΞΆ2)
Percent Overshoot, % OSThe amount that the waveform overshoots the steady state of final value at peak time, expressed as percentage of steady state value: %OS =ππππππππβππππππππππππππππππππππππΓ 100, where ππππππππππππ= 1and ππππππππ=ππππππ.Substituting the expression for ππππππ= 1 +ππβππΞΆ1βΞΆ2in previous subsection and some manipulation results in: %OS =ππβππΞΆ1βΞΆ2Γ 100.Note that %OS is a function of ΞΆ, the damping ratio only. The above expression gives an expression for ΞΆin terms of %OS.ΞΆ=βln(%ππππ100)ππ2+πΈπΈπΈπΈ2(%ππππ100)Fall, 2024Prof. Wenbo He@CAS, McMaster18
Finding ππππand %OS From Transfer Functionβ’Given a transfer function πΊπΊπ π =100π π 2+15π π +100, find ππππand %OS.Solution: ππππ=100 = 10and ΞΆ=ππ2ππππ=15/20 = 0.75.β΄ ππππ=ππππππ1βΞΆ2= 0.475π π And finally, %OS =ππβππΞΆ1βΞΆ2Γ 100 =ππβ0.75ππ1β0.752Γ 100 = 2.838%.Fall, 2024Prof. Wenbo He@CAS, McMaster19
How are ππππAnd πππ π Related To Location of Polesππππ=ππππππ1βΞΆ2πππ π β 4ΞΆππππFall, 2024Prof. Wenbo He@CAS, McMaster20Poles of a second order underdamped systemGs=ππππ2π π 2+ 2ΞΆπππππ π +ππππ2π π 1,π π 2=βΞΆππππΒ±ππππππΞΆ2β1
Lines of Constants ππππ, πππ π and %OSon s-Plane β’Note that horizontal lines on s-plane are lines of constant ππππconsequently they represent lines of constant Tp. Also vertical lines represent constant values of and are therefore lines of constant Ts.β’Finally, since ΞΆ=πππΈπΈπ π ππ, radial lines represent lines of constant damping ratio. But %Overshoot depends only on ΞΆ.Fall, 2024Prof. Wenbo He@CAS, McMaster21%OS =ππβππΞΆ1βΞΆ2Γ 100
Location Of Poles vs Response (1)Fall, 2024Prof. Wenbo He@CAS, McMaster22
Location Of Poles vs Response (2)Fall, 2024Prof. Wenbo He@CAS, McMaster23
Location Of Poles vs Response (3)Fall, 2024Prof. Wenbo He@CAS, McMaster24