Essays
Topics
Writing Tool
Machine Learning AI
ChatGPT
US History
Presidents of the United States
Joseph Robinette Biden
Donald Trump
Barack Obama
US States
States Ranked by Size & Population
States Ranked by Date
IPL
>
Mechanical Engineering
>
Mastering Zero-Input and Zero-State Response in Systems
Mastering Zero-Input and Zero-State Response in Systems
School
University of California, Los Angeles
*
*We aren't endorsed by this school
Course
MAE 107
Subject
Mechanical Engineering
Date
Dec 11, 2024
Pages
7
Uploaded by ChefRose22801
TA : Shuo-Wu(Will) Shih
Email :
swshih@g.ucla.edu
O
ffi
ce Hour : Thursday 10-11 am
Solving
the
IVP
-
>
Initail
Value
Problem
=
ayce)
+
bult)
,
110)
=
Yo
,
as
Sol
:
Y
(t)
=
galt-tolyo
Stact-ibulus
diy
La
-
zero-input
zero-state
ex1
:
Compute
(t)
when
e
for
to
and
Y(t)
=
eaty
-
Stact-u(t)dY
eat
Statist
bedT
-ente
T
=
e
*
yo
+
bet(ex
-
a(t))
·
et
ex2
:
Compute
Y(t)
when
uct)
=
et
for
tho
and
C
=
a
Y(e)
=
2
%+
beat
sendt
,
=n
=
eatyot
beat
so
1
dy
=
eatyo
+
be
e
ex3
:
Compute
Y(t)
when
ult)
=
cost)
Formula
:
eithe
Re
Im
u(t)
=
coslve)
=
e(eirt)
Y(t)
=
galt-tolyo
Stact-ibulus
d
=
at
Stalt-bReLe
=
e
%+
ReSataT
it
T
=
e
*
+Yo
+
Re(beat
not
Limad
=
e
%
o
+
Felder
(east)
=
etyo
the
-alt
-
1)
4
=
a
+
bj
=
0
,
est
P
=
Jub2
,
0
=
tan")
(2
=
c
+
dj
=
92ejt
P2
=
J
,
E
=
tan"
(2)
(b
+
0)
Ente
↑
A
·
O
or T
=
ey
+
Fells
ere*)
p
:
-tan"
(
Re
=
ey
+
xe)eb
+
we
+
Pljatkbl
,
=
e
%+
(CS(Ob
+
we
+
P)
-
ecos(b
+
+)
aut yo
,
b
=
0
=
Yown
(costvetys
-
ecosp)
,
bo
E
II
e
**
Yo(-cos(rt
+
1)
+
eatcosp)
,
60
Los
(2
+
B)
=
cos
&
cosB-sinsing
=>
cos(
+
i)
=
CoS2
·
(1)
-
Sind
0
=
-los
=%+
Fema
(203 (we
+
+)
-
eatcosa)
z
zero-input
zero-state
at
a co
,
texe
-
>
0
=
-S
we
-
transient
response
steady-state
response
ex
4
:
-
V
-
V
+
=
v
-
=
E
I
↓
Wi
-
⑫
?
=
⑫
RY
=
4
mem
y(t)
=
ay(
+
)
+
bu(t)
I
a
=
-
2
,
b
=
10
=
2y
+
10
u
()
Comput
Yct)
when
ult)
=
et
for
20
,
y(0)
:
1
Y(e)
=
eaty
+
Sta(t
4)bu(i)di
=
hty
+
St
-
2(t
-
4)
.
10
.
edi
=
e
**
Yo
+
10e
+
(e
%
)
=
e
-
+
Yo
+
10e
(et
-
1)
It
-t
=
+e
zero-input
zero-state
-
2t
(b)
compute
y(t)
when
act-e
for
T20
y(0)
=
I
-
Y(e)
=
eaty
+
Sta(t
4)bu(i)di
=
hty
+
St
-
2(t
-
4)
·
10
.
edi
=
ey
+
10 s
ed
=
e-Hy
+
10egdY
=
e
yo
-
10
+
e
t
Yo
=
Y
(0)
=
1
=
e
-
2
+
10
+
e
()
compute
y(t)
when
UC)
=
sint
for
tho
.
Aft
-
Inlet,
Y(e)
=
eaty
+
Sta(t
4)bu(i)di
=
hty
+
St
-
2(t
-
4)
·
10
.
Im(est)di
=
e
**
Yo
+
Im(o
10
.
ect
grind
=
e
**
Yo
+
[m(10
et
Lehi)
=
(
+
St
-
1)
S
X
=
ety
+
Im
et
-
1)
=
e
%
+
Im
=e
A
=
(0-
tan"(t))
=
-
tan"
(E)
=
e Y
+
Im
=
e
*
YotIn
(
-(sin(p
+
+)
-
esind)
un
zero-state
Yo
=
-1
=
e
+
(sin(p
+
t)
-
e* sind)
=
(-1-
Esind)e*
+
sin
(4
++
)
-
u
trasient
response
steady-state
response