Essays
Topics
Writing Tool
Machine Learning AI
ChatGPT
US History
Presidents of the United States
Joseph Robinette Biden
Donald Trump
Barack Obama
US States
States Ranked by Size & Population
States Ranked by Date
IPL
>
Industrial Engineering
>
Analyzing CO2 Emissions: Vehicle Class, Fuel Type, and More
Analyzing CO2 Emissions: Vehicle Class, Fuel Type, and More
School
University of Michigan
*
*We aren't endorsed by this school
Course
STATS 413/500
Subject
Industrial Engineering
Date
Dec 11, 2024
Pages
5
Uploaded by KidFog18853
call:
Im(formula
=
CO2.Emissions.g.km.
~
Vehicle_Class
+
Fuel_Type
+
Transmission_Numeric
+
Engine.Size.L.
+
Fuel.Consumption.Comb..L.100.km.,
data
=
co2_data)
Residuals:
Min
1Q
Median
3Q
Max
-99.648
-8.017
-0.104
9.021
98.284
Coefficients:
Estimate
Std.
Error
t
value
Pr(>|tl)
(Intercept)
8.2701
1.8825
4.393
1.14e-05
***
Vehicle_Class
1.2053
0.2626
4.590
4.52e-06
***
Fuel_Type
10.9143
0.2820
38.710
<
2e-16
***
Transmission_Numeric
-0.3390
0.6684
-0.507
0.612
Engine.Size.L.
10.3893
0.3217
32.297
<
2e-16
*¥**
Fuel.Consumption.Comb.
.L.100.km.
14.6587
0.1491
98.282
<
2e-16
*¥**
Signif.
codes:
0
“***’
0.001
‘**’
0.01
‘*’
0.05
‘.’
0.1
*
’
1
Residual
standard
error:
18.99
on
6276
degrees
of
freedom
Multiple
R-squared:
0.8975,
Adjusted
R-squared:
0.8974
F-statistic:
1.099e+04
on
5
and
6276
DF,
p-value:
<
2.2e-16
QQ
Plot
Do
Theoretical
Quantiles
0
|
-2
L
;
T
T
T
T
T
-100
-50
0
50
100
Sample
Quantiles
Residual
vs
the
predicted
response
ool
sjenpisay
004~
450
400
350
300
250
200
150
Fitted
values
Residuals
vs
Fitted
Q-Q
Residuals
8
(O
-
=
>
78@H5©
©
or_
Q
b=
o)
b4
g
=
T
o
°
:
5
SR
@
w0
-
©
[}
C
8
o
w
?
-
03818
T
T
T
T
T
T
T
150
200
250
300
350
400
450
4
Fitted
values
Theoretical
Quantiles
Scale-Location
Residuals
vs
Leverage
O
-
W
o
_
»
®
8
o
B
=}
-
O
°
o
g
.
M
o
-
o
=
-~
o
.2,
o
g
o
_|
N
=
®
g
=
8
-
3
T
e
2
0
o
®
&
00
00°
0°
3
pu
o
7
(‘t:)
<
o
126809
©
Q
5
]
o
o
o
©
-
o
A
T
T
I
T
150
200
250
300
350
400
450
Fitted
values
Analysis
of
variance
Table
0.004
Leverage
Model
1:
CO2.Emissions.g.km.
~
Vehicle_Class
+
Fuel_Type
+
Transmission_Numeric
+
Engine.Size.L.
Model
2:
CO2.Emissions.g.km.
~
Vehicle_Class
+
Fuel_Type
+
Transmission_Numeric
+
Engine.Size.L.
+
Fuel.Consumption.Comb..L.100.km.
Res.Df
RSS
Df
Sum
of
Sq
F
Pr(>F)
1
6277
5744953
2
6276
2262588
1
Signif.
codes:
0
>
>
alpha
=
0.05
>
qf(1-alpha,
1,
6276)
[1]
3.842941
3482364
9659.4
<
2.2e-16
***
f¥¥xx’
0,001
¥’
0.01
‘¢’
0.05
‘.7
0.1
Prediction:
1
Actualvs
Predicted
Values
700
332
600
00
235
400
182
331
300
233
184
200
100
0
1
2
3
e==CO2
Emission
(Actual)
=====CO2
Emission
(Predicted)
call:
Im(formula
=
CO2.Emissions.g.km.
~
Vehicle_Class
+
Fuel_Type
+
Transmission_Numeric
+
Engine.Size.L.
+
Fuel.Consumption.Comb..L.100.km.,
data
=
co2_data)
Residuals:
Min
1Q
Median
3Q
Max
-99.648
-8.017
-0.104
9.021
98.284
Coefficients:
Estimate
Std.
Error
t
value
Pr(>|tl)
(Intercept)
8.2701
1.8825
4.393
1.14e-05
***
Vehicle_Class
1.2053
0.2626
4.590
4.52e-06
***
Fuel_Type
10.9143
0.2820
38.710
<
2e-16
***
Transmission_Numeric
-0.3390
0.6684
-0.507
0.612
Engine.Size.L.
10.3893
0.3217
32.297
<
2e-16
*¥**
Fuel.Consumption.Comb.
.L.100.km.
14.6587
0.1491
98.282
<
2e-16
*¥**
Signif.
codes:
0
“***’
0.001
‘**’
0.01
‘*’
0.05
‘.’
0.1
*
’
1
Residual
standard
error:
18.99
on
6276
degrees
of
freedom
Multiple
R-squared:
0.8975,
Adjusted
R-squared:
0.8974
F-statistic:
1.099e+04
on
5
and
6276
DF,
p-value:
<
2.2e-16