Essays
Topics
Writing Tool
Machine Learning AI
ChatGPT
US History
Presidents of the United States
Joseph Robinette Biden
Donald Trump
Barack Obama
US States
States Ranked by Size & Population
States Ranked by Date
IPL
>
Mathematics
>
Finding Critical Values and Global Extrema in Functions
Finding Critical Values and Global Extrema in Functions
School
Fairfield University
*
*We aren't endorsed by this school
Course
BIOL 234
Subject
Mathematics
Date
Dec 10, 2024
Pages
73
Uploaded by MateValor4972
Exercise
I
44
1.
get
)
=
t
:
e-
t.tt
Eli
2)
To
find
the
global
extrema
I
need
to
test
y
C-
11
,
got
&
¥
4
functions
←
where
c
can
be
more
than
is
the
it
values
onevahej
①
when
either
y
'
lt
)
is
0
or
undefined
Cin
other
words
find
the
critical
values
of
the
junction
)
I
.
g.
C-
1)
:
3174
gal
i
Ee
-
th
g.
c-
D=
-
Fe
'
gal
=ÉTe
yell
=
life
gt
D=
le
gt-
using
oak
g.
C-
11=2.718
ga
:
of
(2)
=
cafe
-4
of
(2)
=
if
¥
hint
¥
215
glad
-
-
I
yank
1.
Finding
critical
values
:
"
"
I
got
)=t
?
e-
t
g
'Ct=É•[étTt
e-
t.lt
:]
•
g.
A)
=
#
•
le-tl.EDY-e-t.at#Yg'ltI--(t:.e-t.-)te-t.oge-
÷
)
gits
:(
e-
t
.
-
t
:)
-1
¢
-
t
.
E.
e-
¥
1
a.
b
I
a
•
c
a
(
Btc
)
Jr
g'lt)=éttt÷+}t"-
5124
I.
Need
to
solve
when
y
'
It
:O
&
when
g
'
It
)
is
not
defined
.
g
'
Ctl
:O
e-
t
ft
:
+3T
¥
)
=
0
A-
I
Need
to
solve
a
-0
&
b
=
0
A-
-
O
•
•
€
-5
-
-
o
%
A
follows
the
form
of
et
.
The
range
of
é
is
⊥
,
a)
thus
there
will
be
no
value
of
t
that
will
make
A
-
-0
true
.
6174
1
.
B
-
t
?
+
Est
=
O
✗
3
✗
3
→
t
?
t
2T
¥
=
0
T
¥
(-31-+2)=0
IT
Need
to
find
when
f-
0
&
D=
o
f
=
0
,
C
follows
the
form
fix
5-
X
?
where
n
is
negative
which
has
a
range
of
too
,
0
)
0
CO
t
)
.
Thus
there
is
'
no
answer
for
G-
0
1
.
D=
o
-
Ky
-
31--12=0
-
2
-
2
-
3
t
=
-2
=3
=3
t=3
☐
Now
need
to
check
when
ty
there
are
any
)
values
of
t
that
make
f
'
l
t
)
undefined
.
Given
my
explanation
of
why
c-
-
o
,
is
false
,
Ñltisundehnwwhent=0T
I.
80th
My
2.718
0
0.392
¥
2
f-
•
•
•
•
y
-
I
0
2-3
2
At
critical
values
Thelargestvalueofyct
)
within
Eliz
]
happens
when
t=
-1
Thus
the
global
maximum
is
eiht
"
ihe
point
in
which
the
global
maximum
is
obtained
is
c-
ligtl
)
)
which
is
the
)
1474
:÷
¥
÷÷÷
.
hlo
)
=
0-+24
hCO)=}
hH:=
has
=Y
¥
÷
,
h
(4)
=
18
¥
hC4)=Y
2-
Need
to
find
critical
"
"
numbers
:
f
h
'
is
/
=
¢
""KsYL%
¥¥
4Gs+
☐
•)_
n'
a)
=
"""Y
?¥
Y
¥
4laD_
nisi
=
"
¥¥¥
Y
"
h
'
(g)
=
(452+25)-(25+4)=1%4
4
it
4s
+
I
msn.EE
?
.:-;nisr-::::-*
WiUfiydmhenh'Hisundefined:__
4
it
4
s
+
I
=
0
12
¥
12
=
o
2.
A
=
0
24
¥
±gnmaÉ
2-2=-1-2
is
not
within
s
←
a
Will
now
find
when
his
equals
07
¥
:
¥
⾨
=o
2.
Need
to
plug
in
all
1%4
relevant
critical
number
H
into
h
Is
)
.
The
relevant
critical
number
G)
are
5=1
.
t
h
(1)
•
nT
¥¥
,
h
111
=
h
(
it
=
}
h
1.
f
a)
=
(
✗
4
×
-216
2%4
f
'
CH
=6(
✗
4
×
-2
)5•[
✗
4
×
-5
jail
-
-61
×
4
×
-2112
×
+1
)
y
'
1
×
1=64
×
+211
×
-11%2
✗
+
1)
f
'
CH
:O
Vr
0=6/1
×
+211
×
-11
/
{
2
×
+11
Need
to
solve
✗
+2=0
→
×
I
¥
=0
✗
-
I
:O
→
I
2
×
+1--0
→
2
✗
=
-
I
→
x=
A
B
C
D
24
>
y
-
-
-
-
p
-1++1--1,0
-
-
-
-
-
apt
-1-1++1--1
-2
-
£
I
A
:
will
use
f'
C-
31
ft
-31=611-3+211-3
-11%21-31+11
f
'
C-
3)
=
611-11-1151-1
y
'
C-
31=414-1
y
'
C-
31=411-1
f.
'
C-
3)
=
-
B
:
will
use
flit
of
't
)
=
611-1+211-1
-1114241
-111
fat
=
611+11-115
f)
fat
=
c-
Pt
)
→
j
'
tis
-1-11-1
→
f
'
c-
11=-1
4-
•
221>4
C
:
will
usef
'M
J
'
61=640+216-1114261+1
)
f'
(01--611+11-1154)
y
'
101=1-1%+1
f'
co
)=
(-11-1)
jcoi=
-
D:
will
useful
f'
(2)
=
642+2112-111%2121
-111
f'
G)
=
611+11+1%+1
jlzk
(-44-1)
f'
121=1-111+1
1421
=
-1
2
.
Thus
the
domain
if
"
"
hot
)
is
C-
oooo
)
h
Ct
I
=
Ct
+
1)
e-
¥
,
h
'
Ct
Ht
+111
e-
¥
11
(
e-
¥
/
(
t
+
1)
•
h
'
A-
1-
-
Ct
+11k
¥
File
¥
1111
a
h
'
A)
=
¢
+4
ice
¥
I
:[
¥
1
:'-(
e-
¥
1
a
•
(
b
•
c
+
1)
h
'
(
t
)
=
(
e
¥
)
(
It
+
it
1
¥
I
•
+
1
I
h
'
little
¥
Nt
+
it
1
¥
,
I
+
it
¥
]
I
"""%;Y;tY-
2.
÷[
¥
]=t"Y
!
-K%
,
¥
[
¥
]=
-9
¥
¥
[
¥
]=
¥
t
plug
into
hit
)
n'
A)
=le
¥
Ñt
-1111--11-1+11
Need
to
find
when
h
'
Ct
)=o
o-te-ENt-iyt-i.tl
-111
Need
to
solve
:
e-
¥
=o
&
t
-1111%1-1+1=0
2.
e
¥
=o
,
since
¥
4
the
range
of
e
"
is
G.
•
)
there
is
no
real
solution
.
(
tee
)
ttzt
)
-11=0
-
l
-
l
d-
+111%1-1=-1
-
It
Eat
=
-1
••
•
2
Bo
-
2
t•+t=2
-2
-2
tht
t
-2=0
It
-12kt
-11
←
t=
-2
,
I
2%4
2.
tilt
)=0
when
11=1
,
-2
A
B
C
-
-
-
-
pet
-1+-1++1--1
-1g
,
-
-
-
-
-
-
-
saying
range
-2
✗
is
load
y
hllttltflt
-111%1-1+11
A
:
will
usef
4-3
)
f
'
C-
31=(-1%-3+111%-3)
-111
y
'
1-31=(-11/1-2113-2)
-11
)
y
'
1-31=(-111-5-+1)
f'
C-
31=(-111-3-11)
f
'
C-
31=411-1
F'
1-
3)
=
-
2.
B
:
will
useylco
)
%
,
JYOK
G)
(10+111-1.01+1)
fico
)=H1(
0+1
)
ft
)
:(
TIG
)
f'
G)
=
-1
c.
Will
use
f'
121
f'
(2)
=HK2
-411-1-2.21+1
)
y'
(2)
It
)(
(3)
(-11+1)
2421-1-1
/
(-3-11)
1921-1-1
/
f)
L'
(2)
i
-
3%4
3.
a
+
b
a
a
'cr1=2r
-1121nA
)
-
1)
Gr
)
a
(
b
-11
)
a'
G)
=2r
(2)
ncrl
-
I
+
y
a'
Cr
)=2r(
2
Incr
)
)
a'
G)
=4r
In
G)
Need
to
find
when
a'
G)
=
0
+
0=4
rlnlrl
Need
to
solve
0=4
r
&
In
Irk
0
3%
,
3
.
E-
¥
In
(
r
)
=
o
r
=
e
°
a
'
G)
=
4
r
In
(
r
)
,
r
>
O
Te
b-
a
since
r
has
to
be
positive
,
a
will
always
be
+
b
sine
this
follows
the
form
In
CH
,
b
can
output
all
real
numbers
3.
Thus
a
'lrl=G)ln(r
)
331>4
A.
B
✗
g-
-
-
-
-
•
,
-1+-1+-4+-4
A
:WiduseaY
㱺
a'
(E)
=
G)
lnltl
a'
(E)
=
G)
f)
a'
(E)
=
-
Biwitluse
a'
121
a'
(2)
=
G)
Ink
)
a'
(2)
=H(t
)
a'
(2)
It
Exercise
#
My
fcx
)=ln
1
×
2-4
×
+5
)
xintfduginoforaio-lncih-4x.is
)
e°=
X'
-4
×
+5
-4=5-4
×
+1
,
A
m
1-
"
-
ya
-14=0
0
B
=
0
361,4
✗
-
2
=
0
-1
2
+
2
✗
=
2
×
mtisatl
y
int
[
plug
in
0
for
a
]•
.
¥
É
y
=
In
(
o
-
o
+
s
)
y
=
In
(
s
)
yintisat4n
37/74
will
find
when
f
is
increasing
&
decreasing
f
f
'
(
x
)
=
¥
51s
•
E-
4
×
+59
f
'
G)
=
×¥
+s
(2
×
-4)
jail
=
¥
÷Es
critical
points
located
at
a
values
of
when
2
×
-4=0
&
F-
4
×
+5--0
2
×
-4=0
critical
point
"
-14
+4
✗
(2)
Jk
)
)
24=4
(2,1%12^-41211-5)
=
:/
12,1^14-8+511
✗
'
-4
×
+5=0
-
The
discriminant
is
(-45-41116)
=
16-20=-4
←
since
it
is
less
than
0
,
there
is
no
real
answer
for
n
A
B
-
-
-
-
-
-
-
.gg
-1+-1+-1-1
←
fad
←
✗
A.mil/usej-#Fgjan=::.-I+sjc-n--
+
s
jai
=
jH=÷
y
'
tis
=
-
B
:
will
use
f
'
131
jÑ
?
j
'
on
=
s
¥
4
f
'
l
3)
=
¥
f
'
(3)
=
-1
Thus
f
is
increasing
at
Gin
)
&
decreasing
at
C-
•
,
2)
Will
find
where
f
convenes
up
and
down
to
jail
=
f
"
in
=*""k
¥
÷
¥
;;÷"*
㱺
_
j
"H="""
¥¥¥
%
¥
k
×
I-
¥
j
"
ex
)=k
×
%
¥¥
;:%
×
jail
=
_•÷
¥
÷
will
find
when
Lif
it
occurs
/
j
"
G)
is
undefined
.
(
x2
-4
×
+55=0
✗
2-4
×
+5
=
0
The
discriminant
is
(-41^-41116)
=
16-20
=
-4
←
since
it
is
less
than
0
,
there
is
no
real
this
mean
that
answer
for
a
•
%)
is
defined
for
all
revalues
.
Will
find
when
f
"
(a)
=
042
¥
jail
=
_•÷
¥
÷
o=-•÷
¥¥
÷
0
=
-2
×
2+8
×
-6
0=-242-4
×
+3
)
0
I
-2
(
x
-
1)
(
x
-
3)
X=l&x=3
✓
A
B
C
←
six
-
-
-
-
-
-
1+-1+-1
-141-+1+1--1
-1+-1+-1
I
3
←
✗
Infection
points
:
A
:
WiAusej"
¥
4
J
'
'
(D)
=
-201
+8101
-6
✗
of
-4
Costs
12
j
"
co
"
f
"
co
)
=
F-
=
-
B
:
will
use
j
"
14
:
f"(z)=-2(21t8C2#
¢
2T
-
Y
(2)
-1512
1
"N=-
¥
÷÷
J
"
(2)
=
¥
=
-1
C
:
will
use
of
"
(4)
¥
4
J
"
(4)
=
-2
(4)
+8
CH
-6
④
f-
texts
12
J
"
"
"
=
!
%
¥→
y
"
Cy
=
E-
=
-1
Thus
f
is
concave
upwards
at
G
,
3)
u
GN
)
and
concave
downwards
at
C-
•
,
1)
Finding
iy
values
for
inflection
4
¥
,
points
:
✗
=
I
&
✗
=3
☒
I
fly
=
In
11^-4
(1)
1-
s
)
jl
1)
=
In
11-4
+
s
)
JC
1)
=
In
(2)
¥
3
)
=
In
(3^-413)
+
s
)
f
(3)
=
In
(9-12+5)
f.
(3)
=
In
(2)
Thus
there
is
a
global
min
at
the
critical
point
tho
)
Graph
of
JCX
)
4
¥
㱺
÷÷÷
EYY.ie#..iiE+
red
•÷•
green
a••-•I;•-
&
This
means
fat
is
formed
in
this
may
fcctb
where
b
is
any
real
number
.
This
means
flu
will
be
a
horizontal
straight
line
which
does
not
have
any
extremism
.
If
y
2.
JK
)
=
o
f
'
(c)
=
o
f
"
G)
=
o
aibic
can
be
any
values
as
long
as
a
<
be
C
is
true
.
&
This
means
y
'
'
(c)
=
0
for
some
CE
Cai
b
]
,
will
be
true
,
but
fat
does
not
have
any
inflection
points
.
3.
fix
)
=
-
✗
•
f4
×
k
-
×
?
-
✗
a
¥
f
4
×
1
=
✗
4
•
:
convenes
up
✗
,
¥
;umares
down
4
.
Jake
✗
Let
a
=D
,
b=S
&
G-
2
Let's
test
if
jcb
)
-
JC
a)
=L
'
G)
J
(b)
-
f
Ca
)
-1J
'
cc
)
4.
es
-
E-
ja
¥
4
of
'
cake
✗
flake
"
muy
back
in
es
-
e0=
?
et
es
-1
Iea
es
¥
4
s
:
:#
P
J
1
×
1
is
always
70
on
the
interval
[
a
,
b)
✓
since
Jai
is
ahrays
increasing
on
the
interval
✓
Cab
]
y
'
1
×
1
is
alnay
>
0
But
if
It
conceives
down
not
up
✗
t
1.
Iim
fix
)
¥
,
✗
→
a
t
plugin
a
limp
1
×
1=3
Ink
-1/-281-17
✗
→
a
1*81
×
1=3
Ink
)
-2cal
some13ln(&)<4-2(•
⊥
_|
¥
1,4K
)=
-2cal
=
-
a
2.
Need
to
find
critical
"
"
numbers
f
4)
=3
In
1
×
-11-2
×
+7
J
'
G)
=3
•
¥
•
[
x-D
.
-
2
y
'
all
=
÷
,
-2
win
find
when
f
'
1
×
1=0
0
=
¥
,
-2
2=3
×
-7
¥
2.
21
×
-4
=3
2
✗
-2
=3
+
2
-12
¥
✗
=
I
←
cnhéae@
Will
find
when
f
'
CH
is
undefined
j
'
CH
=
÷÷
-2
2
•
d
=
o
%
,
✗
-
I
=
0
.
✗
=/
←
ignore
as
i
is
outside
the
internal
4
,
a)
A
B
O
+Égg
←
j
'
CH
•
§
f-
X
A
:
Will
test
y
'
Cal
jcxs=÷#
J
'
(2)
=
£
,
-2
2.
f'
14=3--2%1
,
f
'
121=3-2
f
'
121=-1
B
:
will
testy
'D
jcH=÷
,
-2
J
'
131=3-1--2
J
'
(3)
=3
-2
f'
(3)
=
-
"
Thus
f
is
increasing
¥
4
on
the
interval
:
(
1
,
E)
and
decreasing
on
the
interval
:
(
£
,
a)
3.
Need
to
find
when
f
'
H'
"
o
=
¥
,
-2
2=3
×
-7
21
×
-1
)
=3
2
✗
-2
=3
1-
2
-1
2
4
.
63-4
testinys.8-kl-B.SI
Using
calc
J
(
5
.
8
7)
=
0
.
01
J
Is
.
8
8)
=
!
%%dMYte
signs
0
Thus
there
is
a
root
in
the
internal
:C
.
8
>
is
.
8
8)
6
¥
y
5.
part
3
:
There
is
a
global
maximum
at
✗
=
sz.IN
content
this
means
profit
is
the
highest
when
2
soo
motonyles
are
sold
The
Cordinate
of
the
global
mohimum
is
⾨
,
3
tenth
+
2)
*
(
£
,
3.227
.
In
content
the
man
amount
of
profit
is
3.22
million
euros
,
which
only
occurs
when
2
,
so
o
motonyks
are
sold
•
5
.
⾨
Part
3
:
There
is
no
global
man
as
I
:p
an
=
-
o
.
In
content
this
means
that
there
is
no
minimum
amount
you
can
lose
,
as
in
theory
romping
production
Centremly
)
will
lead
to
greater
&
greater
losers
,
the
greater
the
amount
of
motoighs
produced
.
Emerine
VI
#
%y
1.
Revenue
=
price
.
quantity
R
→
amount
of
$
5
price
reductions
.
price
=
400
-
s
×
number
of
subsimkas
=
1000
-12
on
t
(a)
-1400
-
s
×
)
(
1000
-120
×
1
f
(
X
)
I
1400
.
I
000
)
+
(20
×
400)
-
(
s
×
.
1000
)
-
(
5
×
-20
×
1
f
1
×
1
=
40
O
o
o
o
+
8
000
×
-
SO
0
0
✗
-
I
00
×
2
p
(
x
)
I
-
I
00
×
2+3
000
✗
c-
4000
00
I
•
f
'
1
×
1
=
-200
×
-1300
0%4
Need
to
solve
when
p
'
Cx
)
=
0
-
20
0
✗
+3
000
=
0
-
3
0
00
-
3
00
0
÷÷÷÷
a
=
¥
=
I
5
r
"
(
X
)
=
-
2
O
o
1.
sine
real
is
ahnaÉ
"
negative
,
there
is
a
global
and
local
manimum
at
a-
IS
.
Thus
the
Golden
Membership
should
be
priced
at
$
325
pass
=
¥
-s
&
p
US
)
=
325
3
.
¥
4
Revenue
=
price
.
quanity
R
→
amount
of
$
5
price
reductions
price
=
400
-
S
✗
number
of
subscribers
=
1000
1-
lo
n
r
(
X
)
=
¢
100
-
S
X
)
(
1000+10
×
1
p
(
y
)
=
400
.
1000
)
+
(
400
.
10
x
)
-
(
s
✗
•
1000
)
-
(
s
✗
•
10
×
1
f
f
4)
=
40
0,00
O
t
4,00
0
✗
-
Soo
0
✗
-
so
✗
2
p
(
X
)
=
-
SO
✗
2-
I
o
o
o
✗
t
4
o
o
,
o
o
o
p
'
(
X
)
=
-
I
0
0
✗
-
l
00
0
3
.
Need
to
solve
when
?
⾨
r
'
4)
=
o
-
I
0
0
✗
-
I
000
=
0
+
I
o
o
o
t
I
0
00
-
10
0
✗
=
I
0
0
O
Fo
Too
R
=
-10
9
not
a
critical
number
as
x
is
negative
.
Thus
revenue
is
minimized
when
✗
=
0
•