Essential MA266 Practice Problems for Mastering Differential

School
Epic Charter School**We aren't endorsed by this school
Course
EPIC ANSWERS
Subject
Mathematics
Date
Dec 10, 2024
Pages
6
Uploaded by UltraAtom7917
MA266 Practice Problems1.Ify+1 +1ty=1tandy(1) = 0, theny(ln 2) =?A. ln 2ln(ln 2)B. ln(ln 2)C. ln(ln 2) +12 ln 2D.1ln 21e2E.1ln 212.What is the largest open interval for which a unique solution of the initial value problemty+1t+ 1y=t2t3,y(1) = 0is guaranteed?A. 0< t <1B. 0< t <2C. 0< t <3D.1< t <3E.1< t <13.An explicit solution ofy=y21 is?A.y=Ce2t1Ce2tB.y=1 +Ce2t1Ce2tC.y=11Ce2tD.y=1 +Ce2t1e2tE.y33y=C4.Ify=y3andy(0) = 1, theny(1) =?A. 514B.3C. 1D.13E. Does not exist5.Lety(x) be the solution to the initial value problemxy= 3y+ 2x4,y(1) = 0.Then,y(2) isA. 4B. 8C. 16D. 20E. 326.A tank initially contains 40 ounces of salt mixed in 100 gallons of water. A solution containing 4 oz of saltper gallon is then pumped into the tank at the rate of 5 gal/min. The stirred mixture flows out of the tankat the same rate. How much salt is in the tank after 20 minutes?A. 400360e1B. 20C. 80D. 40 + 20eE. 400 + 360e27.Find the general solution of a homogeneous equation using substitutionv=yx.dydx=5x2+ 3y22xyA. 3y2+ 5x2=Cx2B.y2+ 5x2=Cx3C.x2+ 3y2=CxD. 2y5x2=Cx4E.y2+ 3x2=Cx38.Suppose thatdydx= (x+y)21.What is the implicit general solution to this differential equation? (Hint: use the substitutionv(x) =x+y.)A.1x+yx=CB.xy+x=CC.xyx=CD.x(x+y) + 1 =CE.1x+y+x=C1
Background image
9.An implicit solution ofy2+ 1 + (2xy+ 1)dydx= 0is?A. 2(xy2+y) =CB.xy2+y=CC.xy2+x+y=CD.y33+y+x2y+x=CE.y=xy2+C10.Consider the autonomous differential equationdydt=110(y1)(y4)2.Classify the stability of each equilibrium solution.A.y= 1 andy= 4 both unstableB.y= 1 unstable;y= 4 stableC.y= 0 andy= 1 stable;y= 4unstableD.y= 1 stable;y= 4 semistableE.y= 0 stable;y= 1 andy= 4 unstable11.Consider the following doomsday/extinction differential equation for a populationP(t) with the initialpopulationP(0) = 4.dPdt= 3P(P2)At what timetdoes “Doomsday” occur (which means the population explodes)?A.ln (2)6B.ln (2)3C.ln (4)3D.ln (4)6E.12.Use Euler’s method with step sizeh= 1 to find the approximate value ofy(3), wherey(x) solves the initialvalue problemy=x+y2,y(0) =8.A.17B.22.5C.23.5D.24.5E.2713.If the WronskianW(f, g) =3e4tandf(t) = 4e2t, theng(t) could beA.34te2tB. 12e2tC.32e2tD.34te4tE.34te2t14.The general solution ofy′′4y+ 4y= 0is?A.y=C1e2t+C2te2tB.y=C1e2t+C2e2tC.y=C1e2t+C2e2tD.y=C1e2t+C2te2tE.y=C1t+C2t215.The general solution ofy′′′+ 4y′′+ 5y= 0is?A.y=C1e2tcost+C2e2tsintB.y=C1+C2e2tcost+C3e2tsintC.y=C1+C2etcos 2t+C3etsin 2tD.y=C1+C2cost+C3sintE.y=C1+C2e2tcost+C3e2tsint16.Lety(x) be the solution to the reducible second-order differential equationy′′+ (y)2= 0, y(0) = 0, y(0) = 1.Findy(2). (Use the substitutionp=y>0.)A. ln 3B.e2C. ln 5D.e4E. 4Page 2
Background image
17.An object weighting 8 pounds attached to a spring will stretch it 6 inches beyond its natural length. Thereis a damping force with a damping constantc= 6 lbs-sec/ft and there is no external force. If att= 0 theobject is pulled 2 feet below equilibrium and then released, the initial value problem describing the verticaldisplacementx(t) becomes?A. 8x′′+ 6x+ 16x= 0, x(0) =2, x(0) = 0B. 8x′′+ 6x+ 16x= 0, x(0) = 2, x(0) = 0C.14x′′+6x+ 16x= 0, x(0) = 2, x(0) = 0D.14x′′+ 6x+ 8x= 0, x(0) = 2, x(0) = 0E. 256x′′+ 6x+ 16x=0, x(0) = 2, x(0) = 018.A particular solution,yp, ofy′′4y+ 3y= 2t+etis?A.12tet+13t+12B.12tet+12t+12C.12et+13t+12D.t2+etE.12tet+23t+8919.Determine the appropriate form for a particular solutionyp(x) to the third-order differential equationy(3)+y′′yy= cosx+xex.A.Acosx+Bsinx+x2(Cx+D)exB.Acosx+x(Bx+C)exC.x2(Acosx+Bsinx)+(Cx+D)exD.Acosx+BxexE.Acosx+Bsinx+ (Cx+D)ex20.Ify′′+ 5y+ 6y= 24et,y(0) = 0,y(0) = 0, theny(1) =?A.ee2+ 6e3B. 2e8e2+ 6e3C.e8e2+ 6e3D.e+ 8e2+e3E. 021.The differential equationy′′2ty+2t2y= 0has solutionsy1(t) =tandy2(t) =t2. Ify′′2ty+2t2y= 2;y(1) = 0, y(1) = 0theny(2) =?A. 8 ln 24B. 0C.6D. 8 ln 2 + 4E. 8 ln 222.A spring-mass system is governed by the initial value problemx′′+ 4x+ 4x= 4 cosωtx(0) = 9,x(0) =2.For what value(s) ofωwill resonance occur?A. 0B. 2C. 4D. no value ofωE. 2< ω <inf23.Rewrite the second order equation2u′′+ 3u+ku= cos 2tas a system of first order equations.A.(x=yy=12(3xky+ cos 2t)B.(x=xy=12(3ykx+ cos 2t)C.(x=yy=12(3ykx+ cos 2t)D.(x=yy= 2y+kx+ cos 2tE.(x= 2y+kx+ cos 2ty=xPage 3
Background image
24.The solution ofx=1141x,x(0) =32is?A. 2e3t12+et12B. 2e3t10+et12C.e3t21+et11D. 3e3t12et12E. 3e3t12+et0425.Solvex=1111x,x(0) =12.A.x(t) = 2etsintcostetcostsintB.x(t) = 2etsintcost+etcostsintC.x(t) = 2etsintcostetcostsintD.x(t) =etsintcostetcostsintE.x(t) =etsintcostetcostsint26.Solve the initial value problemx=Ax,x(0) =11,whereA=1101.A.et112tet10.B.et11+tet10.C.et11+ 2tet10.D.et01+ 2tet10.E.et112tet10.27.What values of the parameterαin the system below make the origin a saddle point in the phase plane:x=11α2xA.α >2B.α >14C.α <14D. 2> α >14E.α <228.Find a particular solution ofx1x2=0110x1x223.A.xp=23B.xp=23C.xp=32D.xp=32E.xp=1129.Find the general solution ofx1x2=2011x1x26et1.A.c101et+c211e2t+21et+01B.c101et+c211e2tC.c101et+c211e2t6et1D.c101et+c211e2t+60et+01Page 4
Background image
E.c110et+c211e2t+21et+0130.L{et(1 + cos 2t)}=?A.1s1+1(s1)2+ 4B.1s11s+s1(s1)2+ 4C.1s1s1s22s+ 5D.1s+s(s1)2+ 4E.1s1+s1s22s+ 531.Find the Laplace transform off(t) =t,0t <10,1t <.A.es1s+1s2B.1s2es1s2C.1s2es1s+1s2D.1s2+2es1s+1s2E.es1s+1s232.Solvey′′+ 3y+ 2y= 4u1(t)y(0) = 0,y(0) = 1.A.u1(t)(24e(t1)+ 2e2(t1))B.u1(t)(24e(t1)+ 2e2(t1))+ete2tC.u0(t)(24e(t1)+ 2e2(t1))+ete2tD.(24e(t1)+ 2e2(t1))+ete2tE.ete2t33.Find the solution of the initial value problemy′′+y=δ(tπ)y(0) = 0,y(0) = 1.A.y= sint+u0(t) sin(tπ)B.y= sint+uπ(t) sin(πt)C.y=uπ(t)(sint+ sin(tπ))D.y=uπ(t) sintE.y= sint+uπ(t) sin(tπ)34.The inverse Laplace transform ofF(s) =sess2+ 2s+ 5is?A.u1(t)(et1cos 2(t1)12et1sin 2(t1))B.u1(t) (etcos 2t)12etsin 2tC.u1(t)(et+1cos 2(t1)12et+1sin 2(t1))D.u1(t)(etcos 2(t1)12etsin 2(t1))E.et+1cos 2(t1)12et+1sin 2(t1)35.LZt0sin 2(tτ) cos(3τ)=?A.1s2+ 4+ss2+ 9B.2s(s2+ 4)(s2+ 9)C.2s2+ 4+ss2+ 9D.2(s2+ 4)(s2+ 9)E.s(s2+ 4)(s2+ 9)Page 5
Background image
Answer Key:1. D2. C3. B4. D5. C6. A7. B8. E9. C10. D11. A12. C13. E14. A15. B16. A17. C18. E19. A20. B21. A22. D23. C24. A25. C26. B27. A28. D29. A30. E31. C32. B33. E34. C35. BPage 6
Background image