Understanding Linear Transformations and Matrices in MATH 220

School
Cumberland Valley Hs**We aren't endorsed by this school
Course
MATH 220
Subject
Mathematics
Date
Dec 12, 2024
Pages
16
Uploaded by MegaBraveryToad20
Midterm II10/26/2023MATH 220MatricesName:PRINTyour nameCLEARLYas it appears in CANVAS and LionPath.PSU Email ID:@psu.eduSection Instructor:Section number:INSTRUCTIONSWrite your initials on the bottom of each page in the indicated space.Failure to do this may result in a 5 point deduction.Check that your exam contains 13 questions numbered sequentially on 16pages.Answer all your questions in your test booklet, show all of your work, writelegibly, and write your final answer in the box or space provided.The use of a calculator, cell phone, smartwatch, or any other electronic deviceis not permitted during this examination.The use of scrap paper or notes of any kind is not permitted during thisexamination.Good luck!Page 1 of 16Initials:
Background image
You can use this page foroverflowscratch work.Please label which problem(s) it pertains to.Only use this page if you run out of space elsewhere.Page 2 of 16Initials:
Background image
1. (4 points) Provide a geometric description of how the linear transformationTacts on anyvectorx=xyinR2.(a)T(x) =0110xTreflectsxover the origin.Treflectsxover the liney=x.Trotatesxω4radians clockwise.Trotatesxω4radians counterclockwise.(b)T(x) =1000xTreflectsxover thex-axis.Treflectsxover they-axis.Tprojectsxonto thex-axis.Tprojectsxonto they-axis.(c)T(x) =1002xTstretchesxhorizontally by a factor of 2.Tstretchesxvertically by a factor of 2.Tdoubles the length ofx.Thalves the length ofx.(d)T(x) =1001xTreflectsxover thex-axis.Treflectsxover they-axis.Tprojectsxonto thex-axis.Tprojectsxonto they-axis.Page 3 of 16Initials:[x][:]··[i]
Background image
2. (6 points) The formula for a linear transformationTis given below. Find the standard matrixAofT. Then determine if the linear transformation is one-to-one, onto, both one-to-one andonto, or neither.(a)T:R2R2defined byTxy=xyA=Select one: The linear transformationTisOne-to-onebut not ontoOntobut not one-to-oneBoth one-to-one and ontoNeitherone-to-one nor onto(b)T:R3R2defined byTxyz=x+yz2y+zA=Select one: The linear transformationTisOne-to-onebut not ontoOntobut not one-to-oneBoth one-to-one and ontoNeitherone-to-one nor ontoPage 4 of 16Initials:[i][te7not1-1&ontovBo]]
Background image
3. (8 points) SupposeT:R2R2is alineartransformation such thatT10=23andT13=42.FindT19.T19=Page 5 of 16Initials:[6-s(c]=(wilsesCi15]-z(j]+3(2)=[i]12-4+6-6
Background image
4. (15 points) LetA=1302,B=1152,C=302041,andD=200111002.Perform each computation below or state that the operation is undefined.(a)A+BA+B=(b)CDCD=Page 6 of 16Initials:2X33x3&97pay a
Background image
LetA=1302,B=1152,C=302041,andD=200111002.Perform each computation below or state that the operation is undefined.(c)DCDC=(d)CTCT=(e)B2B2=Page 7 of 16Initials:[ii]3x32x31)][]und
Background image
5. (6 points) Determine if each matrix below is invertible or singular. Justify your response.(a)100230456InvertibleSingularJustification:(b)123050143InvertibleSingularJustification:(c)230460110InvertibleSingularJustification:Page 8 of 16Initials:dut=18def=01(1s)-2(0)+3)-5)=0det=02(0)-3(0)+0det=0
Background image
6. (8 points) LetA=103216033.Ais an invertible matrix. FindA1.A1=Page 9 of 16Initials:iR
Background image
7. (6 points) Define a linear transformationT:R2R2byTxy=2x+ 3y4x+ 5y.(a) Find the standard matrixAofT.A=(b) Find the inverseA1of the standard matrixA.A1=(c) Find a formula for the inverse transformationT1.Write your formula in the formT1xy=bwherebis a vector inR2.T1xy=Page 10 of 16Initials:(3]#[]=(i)[x
Background image
8. (8 points) Find an LU factorization ofA=135158425.L=U=Page 11 of 16Initials:
Background image
9. (12 points) LetA=3163andb=23.(a)A1=11/321.Use A1to solve the linear systemAx=b.x=(b) An LU factorization ofAisA=LU=10213101.Use this LU factorizationto solve the linear systemAx=b=23.x=Page 12 of 16Initials:(x2X)Ax=DAb[ii](=]=(2)
Background image
10. (8 points) Calculate the determinant ofA=1402722102011005usingcofactor expansion.det(A) =Page 13 of 16Initials:-OHe(t)-c)-10+(1)+2(2)20
Background image
11. (5 points) LetAandBbe 22 matrices with det(A) = 3 and det(B) =1.Find thedeterminant of each matrix given below.(a) 2Adet(2A) =(b)A1det (A1) =(c)BTdet(BT=(d)ABdet (AB) =(e)A3det (A3) =Page 14 of 16Initials:2.3=12t3-I-327
Background image
12. (6 points) Determine if each subset ofR2given below is asubspaceofR2. Justify your answer.(a)xyx= 1This setisa subspace ofR2This setis nota subspace ofR2Justification:(b)xyx= 0This setisa subspace ofR2This setis nota subspace ofR2Justification:Page 15 of 16Initials:[07X[8]vGr(ig)
Background image
13. (8 points) LetA=132022652426084. The reduced echelon form ofAis130420012000000.(a) Find a basis for ColA.Basis for ColA:(b) Find a basis for NulA.Basis for NulA:Page 16 of 16Initials:-0o(i7(]X,=-3xz-4xy-2x5Xz==EXY~=x()+m+x[
Background image