Understanding Multiple State Models in Life Contingencies

School
York University**We aren't endorsed by this school
Course
MTH 3280
Subject
Mathematics
Date
Dec 12, 2024
Pages
25
Uploaded by ChiefOxide15741
Multiple state modelMathematics of life contingencies 1Multiple state modelJinghui ChenJinghui ChenMathematics of life contingencies 11/24
Background image
An introduction and basic quantities of interestDefinition 5.1 (Stochastic process)Family of random variables{Tx:x∈ T }is called a stochasticprocess. It is called discrete if the setTis finite or countable,and it is called continuous otherwise. Also, the setSsuch thatTx∈ Sis called the state-space of the stochastic process{Tx:x∈ T }. Note thatTx: Ωx× T → S ⊆[0,).Definition 5.2 (Non-homegenious Markov chain)Stochastic process{Tx:x∈ T }is a Markov chain if (a) it isdiscrete, (b) has finite number of states, and (c)P(Tx+1=s|Tx=sx,Tx-1=sx-1, . . . ,T0=s0)=P(Tx+1=s|Tx=sx)for allx=1,2,3, . . .and alls0,s1, . . . ,st,s∈ S.JinghuiChenMaths of Life contingenices MATH 32802 / 24
Background image
An introduction and basic quantities of interestiWe will use the notationpx,j=P(Tx+1=j|Tx=i)for allx=1,2,3, . . .and alls0,s1, . . . ,st,s∈ S.Definition 5.3 (Transition probability matrix)i jLetm= #(S), then matrixPnMatm×m([0,1])that haspx,+nas itsi-th row andj-th column entry is called transitionprobability matrix, and it gathers probabilities that(x)‘jumps’from thei-th state at timento thej-th state at timen+1.NoteWe must havemj=1i jmj=1Xpx,+n=XP(Tx+n+1=j|Tx+n=i) =1.This does not have to be so for the sum of columns of thematrixPn.JinghuiChenMaths of Life contingenices MATH 32803 / 24
Background image
An introduction and basic quantities of interestExample 5.1 (Simplest alive-dead situation)SetS={1,2}, where{1}denotes “alive” and{2}denotes“dead”. ThenPn=px+nqx01+n,where obviously(Pn)1,1+ (Pn)1,2=px+n+qx+n=1 and also(Pn)2,1+ (Pn)2,2=0+1=1.JinghuiChenMaths of Life contingenices MATH 32804 / 24
Background image
An introduction and basic quantities of interestExample 5.2 (Multiple-decrement situation)SetS={0,1,2, . . . ,m}, where{0}denotes “alive” and{1,2, . . . ,m}denote various reasons of decrement. Then thetransition matrixPnis(m+1)×(m+1)as followingPn=p(τ)x+nq(1)x+nq(2)x+n· · ·q(m)x+n010· · ·0001· · ·0· · ·· · ·· · ·· · ·· · ·000· · ·1,where obviously the sum of row elements is equal to one.JinghuiChenMaths of Life contingenices MATH 32805 / 24
Background image
An introduction and basic quantities of interestExample 5.3 (Multiple-life situation)SetS={0,1,2,3}, where{0}denotes “both are alive”,{1}denotes “(x)is alive and(y)is dead”,{2}denotes “(x)is deadand(y)is alive”,{3}denotes “both are dead”. Then thetransition matrixPnis as following under the assumption ofindependence of the future life-time random variablesPn=px+npy+npx+nqy+nqx+npy+nqx+nqy+n0px+n0qx+n00py+nqy+n0001,where obviously the sum of row elements is equal to one.JinghuiChenMaths of Life contingenices MATH 32806 / 24
Background image
An introduction and basic quantities of interestExample 5.4 (Disability situation)SetS={0,1,2,3}, where{0}denotes “(x)is active”,{1}denotes “(x)is temporarily disabled”,{2}denotes “(x)ispermanently disabled”,{3}denotes “(x)is dead”. Then thetransition matrixPnis such that(Pn)2,0= (Pn)2,1=0.(Pn)3,3=1 and so(Pn)3,0= (Pn)3,1= (Pn)3,2=0, whereasother probabilities are chosen so that they reflect observations.ther popular examples are driving ratings and continuing careretirement communities.JinghuiChenMaths of Life contingenices MATH 32807 / 24
Background image
An introduction and basic quantities of interestProposition 5.1Let Txbe a non-homogeneous Markov Chain withS={1, . . . ,m}, thenk(Pn)i,j:=P(Tx+n+k=j|Tx+n=i) = (PnPn+1· · ·Pn+k-1)i,jfor non-negative and integer x,k,n and i,j∈ S.Proof.We will prove by induction. To start off, letn=0 for simplicity ofthe exposition and without loss of generality. So what is theprobabilityP(T2=jkT0=i)?JinghuiChenMaths of Life contingenices MATH 32808 / 24
Background image
An introduction and basic quantities of interestProof.2(P0)i,j=P(T2=j|T0=i)=mXl=1P(T2=j|T1=l,T0=i)P(T1=l|T0=i)=mXl=1P(T2=j|T1=l)P(T1=l|T0=i)=mXl=1(P1)l,j(P0)i,l=mXl=1(P0)i,l(P1)l,j=(P0P1)i,j(?)= (P2)i,jfor alli,j∈ Sand the last equality holds if the Markov Chain ishomogeneous.JinghuiChenMaths of Life contingenices MATH 32809 / 24
Background image
An introduction and basic quantities of interestProof.Further assume thatP(Tk-1=j|T0=i) = (P0P1· · ·Pk-2)i,jforalli,j∈ S, thenk(P0)i,j=P(Tk=j|T0=i)=mXl=1P(Tk=j|Tk-1=l,T0=i)P(Tk-1=l|T0=i)=mXl=1P(Tk=j|Tk-1=l)(P0P1· · ·Pk-2)i,l=mXl=1(Pk-1)l,j(P0P1· · ·Pk-2)i,l=mXl=1(P0P1· · ·Pk-2)i,l(Pk-1)l,j=(P0P1· · ·Pk-1)i,j(?)= (Pk)i,jfor alli,j∈ Sand the last equality holds if the Markov Chain ishomogeneous.JinghuiChenMaths of Life contingenices MATH 328010 / 24
Background image
An introduction and basic quantities of interestCorollary 5.1LetT0,T1, . . .be a non-homogeneous Markov Chain withS={1, . . . ,m}and transition probability matricesP0,P1, . . .,thenk(Pn) =Pn×Pn+1× · · · ×Pn+k-1for non-negative and integerk,n. Also, if the Markov Chain ishomogeneous, thenk(Pn) = (Pkn)for non-negative and integerk,n.JinghuiChenMaths of Life contingenices MATH 328011 / 24
Background image
An introduction and basic quantities of interestDenote byπthe distribution of the random variableTx, and letπk=P(Tx=k),k∈ S.Corollary 5.2We have that the distribution of the random variableTx+kisπ0(P0P1× · · · ×Pk-1).Proof.We haveP(Tx+k=j) =mXi=1P(Tx+k=j,Tx=i)=mXi=1P(Tx+k=j|Tx=i)P(Tx=i)=mXi=1(P0P1× · · ·Pk-1)i,jπi.JinghuiChenMaths of Life contingenices MATH 328012 / 24
Background image
An introduction and basic quantities of interestProof.Last line yieldsP(Tx+k=j) =mXi=1πi(P0P1× · · ·Pk-1)i,j,which establishes the assertion.Proposition 5.2Consider again a non-homogeneous Markov Chain{Tx,x∈ T }, thenP(Tx+n+1=Tx+n+2=· · ·=Tx+n+k=i|Tx+n=i)=(Pn)i,i(Pn+1)i,i× · · · ×(Pn+k-1)i,i,for non-negative and integer n,k and iS.JinghuiChenMaths of Life contingenices MATH 328013 / 24
Background image
An introduction and basic quantities of interestProof.As we have, by conditioning and evoking the Markovianproperty,P(Tx+n+k=i,Tx+n+k-1=i, . . . ,Tx+n+1=i,Tx+n=i)=P(Tx+n+k=i|Tx+n+k-1=i, . . . ,Tx+n+1=i,Tx+n=i)×P(Tx+n+k-1=i|Tx+n+k-2=i, . . . ,Tx+n+1=i,Tx+n=i)× · · · ×P(Tx+n=i)=P(Tx+n+k=i|Tx+n+k-1=i)×P(Tx+n+k-1=i|Tx+n+k-2=i)× · · · ×P(Tx+n+1=i|Tx+n=i)×P(Tx+n=i),then the conditional probability in the assertion follows.JinghuiChenMaths of Life contingenices MATH 328014 / 24
Background image
An introduction and basic quantities of interestFrom now and on consider a continuous stochastic process{Yx(t)}t0with the state spaceS={0,1, . . . ,m},mNandT= [0,). We assume that:(a)For anys0 andi,j∈ S, the conditional probabilityP(Yx(t+s) =j|Yx(t) =i)is independent on the history of the process for all timesbeforet[0,).(b)For any time lengthh>0,P(2 or more transitions occure within h) =o(h),where we say that the functionf(h)iso(h)iflimh0f(h)/h=0.JinghuiChenMaths of Life contingenices MATH 328015 / 24
Background image
An introduction and basic quantities of interestWe will use the notationtpi,jx=P(Yx(t) =j|Yx=i),i,j∈ S,t0andtpi,ix=P(Yx(s) =js[0,t]|Yx=i),i∈ S,t0(c)The functiont7→tpi,jxis differentiable for allt(0,).Note that now we can define the force of transition as followingμi,jx=limh0hpi,jxh,fori6=j∈ S.JinghuiChenMaths of Life contingenices MATH 328016 / 24
Background image
An introduction and basic quantities of interestNote that we can say equivalently thathpi,jx=h×μi,jx+o(h),fori6=j∈ Sor in other wordshpi,jxh×μi,jx,fori6=j∈ S.The latter expression should remind you the simple alive-deadframework.Proposition 5.3For a general multiple-state model, we have for h>0,x0and i∈ S,hpi,ix=hpi,ix+o(h)JinghuiChenMaths of Life contingenices MATH 328017 / 24
Background image
An introduction and basic quantities of interestProof.The right hand side is obtained by the law of total probability:hpi,ix=P(Yx(h) =i|Yx=i)=P(Yx(h) =i|Yx=i,t[0,h) :Yx(t)6=i)×P(t[0,h) :Yx(t)6=i|Yx=i)+P(Yx(h) =i|Yx=i,t[0,h) :Yx(t) =i)×P(t[0,h) :Yx(t) =i|Yx=i)=P(Yx(h) =i,Yx=i,t[0,h) :Yx(t)6=i)/P(Yx=i)+P(Yx(h) =i,Yx=i,t[0,h) :Yx(t) =i)/P(Yx=i)=P(Yx(h) =i,t[0,h) :Yx(t)6=i|Yx=i)+P(Yx(h) =i,t[0,h) :Yx(t) =i|Yx=i)=o(h) +hpi,ix,which completes the proof.JinghuiChenMaths of Life contingenices MATH 328018 / 24
Background image
An introduction and basic quantities of interestProposition 5.4For any multiple-state model and for h>0,x0and i,j∈ S,we havehpi,ix=1-hmXj=0,j6=iμi,jx+o(h)Proof.We have1=hpi,ix+mXj=0,j6=ihpi,jx+o(h),or1=hpi,ix+hmXj=0,j6=iμi,jx+m×o(h),which completes the proof sincem×o(h) =o(h).JinghuiChenMaths of Life contingenices MATH 328018 / 24
Background image
An introduction and basic quantities of interestProposition 5.5For any multiple-state model, we have for h0and i∈ S,hpi,ix=exp-Zh0mXj=0,j6=iμi,jx(s)dsProof.Start with the observationhhpi,ix=hpi,ix×Δhpi,ix+h,which is true for allh0 because{Yx}h0is a Markovprocess.JinghuiChenMaths of Life contingenices MATH 328019 / 24
Background image
An introduction and basic quantities of interestProof.Further evoking Proposition 1.4, we obtainhhpi,ix=hpi,ix×1-ΔhmXj=0,j6=iμi,jx(h) +oh)orhhpi,ix-hpi,ix=-hpi,ix×ΔhmXj=0,j6=iμi,jx(h) +oh)or forΔh>0hhpi,ix-hpi,ixΔh=-hpi,ixmXj=0,j6=iμi,jx(h) +oh)Δh.Then takeΔh0, and obtainJinghuiChenMaths of Life contingenices MATH 328020 / 24
Background image
An introduction and basic quantities of interestProof.ddhhpi,ix=-hpi,ixmXj=0,j6=iμi,jx(h).This is an ODE we have already seen, and its solution isexactly the assertion of this proposition..Think of the ODEf0(h) =g(f(h),h),that has the initial conditionf(0) =c>0; setf(h) =hpx,g(f(h),h) =-hpx×μx(h)such that0px=1. Thesolution ishpx=exp(-Zh0μx(s)ds).JinghuiChenMaths of Life contingenices MATH 328021 / 24
Background image
An introduction and basic quantities of interestProposition 5.6For any multiple-state model withS={0,1, . . . ,mN},i,j∈ S, we haveddhhpi,jx=Xk6=jhpi,kxμk,jx(h)-hpi,jxXk6=jμj,kx(h).Proof.Start with the expressionhhpi,jx=Xk∈Shpi,kx×Δhpk,jx+h=Xk6=jhpi,kx×Δhpk,jx+h+hpi,jx×Δhpj,jx+h,which hold by conditioning.JinghuiChenMaths of Life contingenices MATH 328022 / 24
Background image
An introduction and basic quantities of interestProof.Further we havehhpi,jx=Xk6=jhpi,kx×hμk,jx(h) +oh)) +hpi,jx×1-Xk6=jΔhpj,kx+h,which yieldshhpi,jx-hpi,jx=Xk6=jhpi,kx×hμk,jx(h) +oh))-hpi,jx×Xk6=jΔhμj,kx(h) +oh).Now divide byΔh>0 throughout and getJinghuiChenMaths of Life contingenices MATH 328023 / 24
Background image
An introduction and basic quantities of interestProof.hhpi,jx-hpi,jxΔh=Xk6=jhpi,kx×μk,jx(h)-hpi,jx×Xk6=jμj,kx(h) +oh).Finally, take the limitΔh0, and the assertion follows.JinghuiChenMaths of Life contingenices MATH 328024 / 24
Background image