Essays
Topics
Writing Tool
Machine Learning AI
ChatGPT
US History
Presidents of the United States
Joseph Robinette Biden
Donald Trump
Barack Obama
US States
States Ranked by Size & Population
States Ranked by Date
IPL
>
Mathematics
>
REVIEW UNIT 5 SOLUTIONS.pdf
REVIEW UNIT 5 SOLUTIONS
.pdf
School
Saint James High
*
*We aren't endorsed by this school
Course
MATHEMATICS 12345
Subject
Mathematics
Date
Dec 16, 2024
Pages
6
Uploaded by DeanSummer13687
©
y r
2
o
0
M
2
h
4
s A
K
G
u
m
t
Q
a
y _
S
v
o
t
f
T
t
v
w
z
a
w
r
a
e
o F
L
]
L
e
C
x
.
h e J
A
o
l
j
l
M S
r
J
i
O
g
l
h
q
t
V
s
n G
r
x
e
v
s
k
e
[
r
g
v
z
e
n
d
G
.
w a i
M
p
a
x
d
B
e
^ K
w
G
i
f
t
n
h
P F
I
\
n
J
f
E
i
r
n
n
i
v
t
I
e
s T
A
l
l
_
g
v
e
M
b
D
r
N
a
h p
2
P
.
Worksheet by Kuta Software LLC
Algebra 2
REVIEW UNIT 5 POLYNOMIALS
Name___________________________________ ID: 1
Date________________ Period____
©
X g
2
q
0
c
2
n
4
I q
K
J
u
C
t
M
a
z X
S
C
o
Y
f
Z
t
E
w
i
a
y
r
i
e
[ d
L
J
L
h
C
V
.
M v w
A
N
l
V
l
G J
r
L
i
_
g
]
h
v
t
Z
s
s M
r
Q
e
P
s
o
e
G
r
e
v
m
e
c
d
`
.
-1-
1) How many zeros could the function
f
(
x
)
= 2
x
5
+
x
3
- 6
x
+ 1
have?
A) 4
B) 3
C) 2
D) 5
*
2) If
x
+ 3
is a factor of
f
(
x
)
, which of the following statements does NOT have to be true?
A) -3 is a root of
f
(
x
)
.
B)
f
(
-3
)
= 0
C)
f
(
3
)
= 0
*
D) -3 is a zero of
f
(
x
)
.
3) How many different third-degree polynomials have 3 and 1 as their only zeros?
A) an infinite number
*
B) 3
C) 1
D) 0
If the expression is a polynomial, then name each polynomial by degree and number of terms.
If the expression is not a polynomial, then choose not a polynomial.
4)
2
x
2
-
3
x
+ 5
A) quadratic trinomial
*
B) not a polynomial
C) quadratic binomial
D) linear trinomial
5)
1
*
A) constant monomial
B) quartic monomial
C) quadratic monomial
D) linear polynomial with 0 terms
6)
x
5
- 8
x
3
+ 6
x
2
A) quadratic monomial
B) quintic binomial
*
C) quintic trinomial
D) not a polynomial
7)
5
k
4
+ 4
k
-2
- 8
A) cubic polynomial with five terms
B) quadratic monomial
*
C) not a polynomial
D) quintic monomial
8)
6
8
4
A) constant trinomial
B) quintic monomial
*
C) constant monomial
D) not a polynomial
9)
3
b
6
A) constant monomial
B) linear polynomial with six terms
C) linear binomial
*
D) sixth degree monomial
10)
p
x
3
-
8
x
2
+ 1
A) quartic trinomial
B) not a polynomial
*
C) cubic trinomial
D) quadratic polynomial
11)
x
3
-
1
5
x
1
2
- 11
A) quartic trinomial
*
B) not a polynomial
C) quadratic polynomial
D) cubic binomial
©
s H
2
C
0
P
2
S
4
p h
K
f
u
t
t
L
a
Y Q
S
^
o
G
f
W
t
c
w
J
a
R
r
^
e
f `
L
T
L
u
C
u
.
U v U
A
L
l
m
l
[ T
r
\
i
w
g
G
h
J
t
`
s
g T
r
a
e
o
s
a
e
s
r
q
v
Y
e
u
d
F
.
` b D
M
N
a
f
d
\
e
u t
w
_
i
b
t
K
h
I z
I
z
n
M
f
`
i
X
n
s
i
u
t
b
e
c k
A
J
l
o
g
O
e
x
b
P
r
m
a
R u
2
e
.
Worksheet by Kuta Software LLC
-2-
12) A quartic polynomial has, at most, how many turning points?
A)
5
B)
4
*
C)
3
D)
1
13) What is the quotient when
9
x
4
- 45
x
3
+ 37
x
2
+
x
+ 2
is divided by
9
x
2
+ 1
?
A)
x
2
- 5
x
+ 4
9
x
2
+ 1
+ 6
x
- 2
B)
x
2
+
x
+ 2
9
x
2
+ 1
C)
x
2
- 5
x
+ 4 +
6
x
- 2
9
x
2
+ 1
*
D)
x
2
- 5
x
+ 4
Evaluate each function at the given value using synthetic substitution. SHOW YOUR WORK.
14)
f
(
n
)
= 4
n
3
+ 26
n
2
+ 8
n
- 25
at
n
= -6
-1
15)
f
(
n
)
=
n
3
- 7
n
2
+ 5
n
+ 16
at
n
= 5
-9
©
q y
2
w
0
D
2
`
4
\ \
K
n
u
x
t
J
a
S q
S
m
o
P
f
E
t
J
w
Y
a
o
r
E
e
x D
L
C
L
r
C
u
.
Q ` u
A
e
l
Q
l
z ]
r
j
i
^
g
^
h
[
t
Y
s
j v
r
N
e
[
s
x
e
v
r
o
v
_
e
g
d
w
.
Q ^ x
M
R
a
G
d
W
e
w [
w
H
i
Z
t
X
h
y K
I
U
n
h
f
W
i
B
n
o
i
c
t
n
e
U [
A
D
l
H
g
c
e
n
b
d
r
q
a
U W
2
`
.
Worksheet by Kuta Software LLC
-3-
Answer in COMPLETE sentences.
16) Based on this graph, what do you know
about the leading coefficient and the
degree of this polynomial?
x
y
The degree is odd and the leading
coefficient is positive.
17) Based on this graph, what do you know
about the exponent on the corresponding
factor at x= 1?
x
y
-5
-4
-3
-2
-1
1
2
3
-6
-5
-4
-3
-2
-1
1
2
3
The factor (x-1) has a multiplicity
that is odd and greater than 1.
18) How many turning points does this
polynomial have? What is the least
possible degree of this polynomial based
on this graph?
x
y
5 turning points; at least degree 8
Simplify each difference.
19)
(
b
4
+ 1 + 8
b
2
)
-
(
4
b
4
+ 2 + 4
b
2
)
*
A)
-3
b
4
+ 4
b
2
- 1
B)
b
4
+ 4
b
2
- 1
C)
b
4
+ 2
b
2
- 1
D)
2
b
4
+ 4
b
2
- 1
©
H g
2
^
0
U
2
Y
4
c ^
K
`
u
L
t
B
a
q H
S
y
o
A
f
F
t
H
w
J
a
f
r
t
e
H P
L
h
L
\
C
w
.
^ _ H
A
H
l
g
l
E e
r
B
i
M
g
O
h
E
t
N
s
\ p
r
i
e
G
s
q
e
y
r
m
v
m
e
f
d
J
.
c i X
M
\
a
g
d
U
e
H z
w
q
i
[
t
m
h
I U
I
D
n
q
f
`
i
_
n
e
i
q
t
U
e
a h
A
b
l
n
g
R
e
o
b
I
r
o
a
U K
2
t
.
Worksheet by Kuta Software LLC
-4-
Divide. SHOW YOUR WORK.
20)
(
-9
x
3
- 88
x
2
+ 18
x
- 22
)
¸
(
x
+ 10
)
-9
x
2
+ 2
x
- 2 -
2
x
+ 10
Describe the end behavior of each function.
21)
f
(
x
)
=
x
2
+ 4
x
+ 3
A) Rises to the left. Falls to the right
B) Falls to the left. Rises to the right
C) Falls to the left. Falls to the right
*
D) Rises to the left. Rises to the right
22)
f
(
x
)
=
x
3
- 4
x
2
+ 3
A)
f
(
x
)
→
+
∞
as
x
→
-
∞
f
(
x
)
→
-
∞
as
x
→
+
∞
B)
f
(
x
)
→
+
∞
as
x
→
-
∞
f
(
x
)
→
+
∞
as
x
→
+
∞
*
C)
f
(
x
)
→
-
∞
as
x
→
-
∞
f
(
x
)
→
+
∞
as
x
→
+
∞
D)
f
(
x
)
→
-
∞
as
x
→
-
∞
f
(
x
)
→
-
∞
as
x
→
+
∞
23)
f
(
x
)
= -
x
4
+ 2
x
2
+ 2
A)
f
(
x
)
→
+
∞
as
x
→
-
∞
f
(
x
)
→
-
∞
as
x
→
+
∞
B)
f
(
x
)
→
-
∞
as
x
→
-
∞
f
(
x
)
→
+
∞
as
x
→
+
∞
*
C)
f
(
x
)
→
-
∞
as
x
→
-
∞
f
(
x
)
→
-
∞
as
x
→
+
∞
D)
f
(
x
)
→
+
∞
as
x
→
-
∞
f
(
x
)
→
+
∞
as
x
→
+
∞
©
O e
2
X
0
U
2
u
4
S F
K
T
u
g
t
w
a
k t
S
l
o
v
f
X
t
m
w
J
a
Q
r
p
e
x Y
L
x
L
K
C
b
.
E i d
A
U
l
O
l
R ^
r
Y
i
S
g
v
h
F
t
c
s
[ `
r
\
e
i
s
b
e
L
r
l
v
K
e
k
d
l
.
a [ r
M
Q
a
v
d
l
e
D j
w
_
i
H
t
w
h
T ^
I
o
n
U
f
p
i
S
n
j
i
M
t
T
e
c A
A
o
l
\
g
E
e
m
b
U
r
C
a
X J
2
k
.
Worksheet by Kuta Software LLC
-5-
Find all zeros. One zero has been given.
24)
f
(
x
)
=
x
4
- 2
x
3
-
x
+ 2
;
2
{
1
,
-1 +
i
3
2
,
-1 -
i
3
2
,
2
}
Find all zeros.
25)
f
(
x
)
= 3
x
3
- 3
x
2
- 5
x
+ 5
{
1
,
15
3
,
-
15
3
}
26)
f
(
x
)
= 5
x
4
- 29
x
2
- 42
{
7
,
-
7
,
i
30
5
,
-
i
30
5
}
©
S Q
2
r
0
R
2
n
4
K n
K
A
u
n
t
E
a
j V
S
k
o
S
f
M
t
R
w
g
a
f
r
C
e
[ j
L
d
L
k
C
m
.
A u r
A
M
l
A
l
_ i
r
Y
i
h
g
l
h
a
t
n
s
K l
r
l
e
I
s
j
e
Y
r
`
v
s
e
R
d
s
.
c X I
M
u
a
X
d
F
e
w k
w
M
i
T
t
T
h
P F
I
I
n
`
f
p
i
s
n
l
i
V
t
f
e
B L
A
u
l
k
g
n
e
e
b
b
r
i
a
c m
2
e
.
Worksheet by Kuta Software LLC
-6-
27)
x
3
- 5
x
2
+ 7
x
- 3 = 0
{
3
,
1
mult. 2
}
Write a polynomial function of least degree with integral coefficients that has the given zeros.
28)
-
2
3
,
3
5
,
-
1
4
f
(
x
)
= 60
x
3
+ 19
x
2
- 23
x
- 6
29)
-2 +
2
,
-3 +
3
f
(
x
)
=
x
4
+ 10
x
3
+ 32
x
2
+ 36
x
+ 12
30)
-2 -
i
,
2 -
i
,
2 +
i
f
(
x
)
=
x
4
- 6
x
2
+ 25