Exam 2 Cheat Sheet v1

.pdf
School
San Diego State University**We aren't endorsed by this school
Course
STAT 550
Subject
Statistics
Date
Dec 16, 2024
Pages
2
Uploaded by JusticeGoldfish4849
DistributionParametersProbability Mass FunctionExpectationVarianceUniform๐‘›๐‘ƒ(๐‘‹ = ๐‘ เฏก) =เฌตเฏกโŽฏ for ๐‘– = 1, โ€ฆ , ๐‘›๐ธ[๐‘‹] = เท ๐‘ฅเฏœ๐‘ƒ(๐‘‹ = ๐‘ฅเฏœ) = เท ๐‘ฅเฏœแ‰†1๐‘›โŽฏโŽฏแ‰‡ =๐‘ฅเฌต+ โ‹ฏ + ๐‘ฅเฏก๐‘›โŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏเฏกเฏœเญ€เฌตเฏกเฏœเญ€เฌต๐‘‰[๐‘‹] = ๐ธ[๐‘‹เฌถ] โˆ’ (๐ธ[๐‘‹])เฌถ=(๐‘› + 1)(2๐‘› + 1)6โŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโˆ’ แ‰†๐‘› + 12โŽฏโŽฏโŽฏโŽฏโŽฏแ‰‡เฌถ=๐‘›เฌถโˆ’ 112โŽฏโŽฏโŽฏโŽฏโŽฏโŽฏBernoulli๐‘๐‘ƒ(๐‘‹ = 1) = ๐‘and ๐‘ƒ(๐‘‹ = 0) = 1 โˆ’ ๐‘๐ธ[๐‘‹] = เท ๐‘˜๐‘ƒ(๐‘‹ = ๐‘˜) =เฎถเฏžเญ€เฌด๐‘๐‘‰[๐‘‹] = ๐‘(1 โˆ’ ๐‘)Binomial๐‘›, ๐‘๐‘ƒ(๐‘‹ = ๐‘˜) = เตซเฏกเฏžเตฏ๐‘เฏž(1 โˆ’ ๐‘)เฏกเฌฟเฏž, for ๐‘˜ = 0, 1, โ€ฆ , ๐‘›๐ธ[๐‘‹] = เท ๐‘˜๐‘ƒ(๐‘‹ = ๐‘˜) =เฎถเฏžเญ€เฌดเท ๐‘˜๐‘›!๐‘˜! (๐‘› โˆ’ ๐‘˜)!โŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏ๐‘เฏž(1 โˆ’ ๐‘)เฏกเฌฟเฏž= ๐‘๐‘›เฎถเฏžเญ€เฌด๐‘‰[๐‘‹] = ๐ธ[๐‘‹เฌถ] โˆ’ (๐ธ[๐‘‹])เฌถ= ๐‘›๐‘(1 โˆ’ ๐‘) + (๐‘›๐‘)เฌถโˆ’ (๐‘›๐‘)เฌถ= ๐‘›๐‘(1 โˆ’ ๐‘)Poisson๐œ†๐‘ƒ(๐‘‹ = ๐‘˜) =เฏ˜เฐทเดŠเฐ’เณ–เฏž!โŽฏโŽฏโŽฏโŽฏโŽฏ, where ๐‘˜ = 0, 1๐ธ[๐‘‹] = เท ๐‘˜๐‘ƒ(๐‘‹ = ๐‘˜) =เฎถเฏžเญ€เฌดเท ๐‘˜๐‘’เฌฟเฐ’๐œ†เฏž๐‘˜!โŽฏโŽฏโŽฏโŽฏโŽฏ = ๐œ†เฎถเฏžเญ€เฌด๐‘‰[๐‘‹] = ๐ธ[๐‘‹เฌถ] โˆ’ (๐ธ[๐‘‹])เฌถ= ๐œ†(๐œ† + 1) โˆ’ ๐œ†เฌถ= ๐œ†Geometric๐‘๐‘ƒ(๐‘‹ = ๐‘˜) = (1 โˆ’ ๐‘)เฏžเฌฟเฌต๐‘, for ๐‘˜ =, 1, 2, โ€ฆ๐ธ[๐‘‹] =1๐‘โŽฏโŽฏ๐‘‰[๐‘‹] =1 โˆ’ ๐‘๐‘เฌถโŽฏโŽฏโŽฏโŽฏโŽฏNegative Binomial๐‘Ÿ, ๐‘๐‘ƒ(๐‘‹ = ๐‘˜) = ๐ถเฏฅเฌฟเฌตเฏžเฌฟเฌต(1 โˆ’ ๐‘)เฏžเฌฟเฏฅ, ๐‘˜ = ๐‘Ÿ + 1, ๐‘Ÿ + 2, โ€ฆand ๐‘Ÿ = 1, 2, โ€ฆ๐ธ[๐‘‹] =๐‘Ÿ๐‘โŽฏโŽฏ๐‘‰[๐‘‹] =๐‘Ÿ(1 โˆ’ ๐‘)๐‘เฌถโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏHypergeometric*๐‘€, ๐‘, ๐‘˜๐‘ƒ(๐‘‹ = ๐‘ฅ) =เฎผเณฃเฒพเฎผเณ–เฐทเณฃเฒฟเฐทเฒพเฎผเณ–เฒฟโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏ, ๐‘ฅ = 0, 1, โ€ฆ , min(๐‘˜, ๐‘€)๐ธ[๐‘‹] = ๐‘˜๐‘€๐‘โŽฏโŽฏ๐‘ฃ[๐‘‹] = ๐ธ[๐‘‹เฌถ] โˆ’ (๐ธ[๐‘‹])เฌถ=112โŽฏโŽฏโŽฏ(๐‘€ + 1)(๐‘ โˆ’ 1)*๐‘ = ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘๐‘œ๐‘๐‘ข๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›, ๐‘€ = ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ ๐‘ข๐‘๐‘๐‘œ๐‘๐‘ข๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›, ๐‘˜ = ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘ ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘  (how many are chosen for study out of total population), ๐‘ฅ = ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘ ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐‘œ๐‘“ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘’๐‘ ๐‘ก (the random variable)Midterm 2 Cheat Sheet (page 1)Friday, November 15, 20245:20 PMSTAT 550 Applied Probability Page 1
Background image
Expectation, aka Expected Value (Ch 4.1)๐ธ[๐‘‹] = เท ๐‘ฅ๐‘ƒ(๐‘‹ = ๐‘ฅ)เฏซโˆˆเฏŒ, ๐‘Ž๐‘›๐‘‘ ๐ธ[๐‘‹ + ๐‘Œ] = ๐ธ[๐‘‹] + ๐ธ[๐‘Œ]The sum is taken over all values of ๐‘‹.Expectation of a Function of Random Variable (Ch 4.2)Method 1: Let X be a random variable, and let ๐‘Œ = ๐‘”(๐‘‹). If the probability distribution of ๐‘Œis known, then the expectation of ๐‘Œis๐ธ[๐‘Œ] = เท ๐‘ฆ๐‘ƒ(๐‘Œ = ๐‘ฆ)เฏฌโˆˆเฏŒเณคNote: we need to find the PMF ๐‘ƒ(๐‘Œ = ๐‘ฆ)before finding ๐ธ[๐‘Œ]when using this method.Method 2: Let ๐‘‹be a random variable with PMF ๐‘ƒ(๐‘‹ = ๐‘ฅ),๐‘ฅ โˆˆ ๐‘†. Let ๐‘”(๐‘‹)be a funtion of ๐‘‹. Then the expectation of ๐‘ฆ = ๐‘”(๐‘‹)is ๐ธ[๐‘Œ] = ๐ธ[๐‘”(๐‘ฅ)] = เท๐‘”(๐‘ฅ)๐‘ƒ(๐‘‹ = ๐‘ฅ)เฏซโˆˆเฏŒVariance, a measure of variability or spread (Ch 4.6)Let ๐‘‹be a random variable with mean ๐ธ[๐‘‹] = ๐œ‡ < โˆž. Then the variance of ๐‘‹is๐‘‰[๐‘‹] = ๐ธ[(๐‘‹ โˆ’ ๐œ‡)เฌถ] = เท (๐‘ฅ โˆ’ ๐œ‡)เฌถ๐‘ƒ(๐‘‹ = ๐‘ฅ)เฏซโˆˆเฏŒเณฃ= ๐ธ[๐‘‹เฌถ] โˆ’ (๐ธ[๐‘‹])เฌถStandard Deviation, measure of spread (Ch 4.6)Let ๐‘‹be a random variable with variance ๐‘‰[๐‘‹]. Then the standard deviation of ๐‘‹is๐‘†๐ท[๐‘‹] = เถฅ๐‘‰[๐‘‹]โŽฏโŽฏโŽฏโŽฏProperties of Variance and Standard Deviation (Ch 4.6)Let ๐‘‹be a random variable where ๐ธ[๐‘‹]and ๐‘‰[๐‘‹]exist, then for constants ๐‘Žand ๐‘,๐ธ[๐‘Ž๐‘‹ + ๐‘] = ๐‘Ž๐ธ[๐‘‹] + ๐‘,๐‘‰[๐‘Ž๐‘‹ + ๐‘] = ๐‘Žเฌถ๐‘‰[๐‘‹],๐‘†๐ท[๐‘Ž๐‘‹ + ๐‘] = |๐‘Ž| ร— ๐‘†๐ท[๐‘‹]General Formula for Variance of a Sum (Ch 4.7)For RVs ๐‘‹and ๐‘Œwith finite variance,๐‘‰[๐‘‹ + ๐‘Œ] = ๐‘‰[๐‘‹] + ๐‘‰[๐‘Œ] + 2๐ถ๐‘œ๐‘ฃ(๐‘‹, ๐‘Œ)and,๐‘‰[๐‘‹ โˆ’ ๐‘Œ] = ๐‘‰[๐‘‹] + ๐‘‰[๐‘Œ] โˆ’ 2๐ถ๐‘œ๐‘ฃ(๐‘‹, ๐‘Œ)If ๐‘‹and ๐‘Œare uncorrelated (aka independent),๐‘‰[๐‘‹ + ๐‘Œ] = ๐‘‰[๐‘‹] + ๐‘‰[๐‘Œ]Expectation and Variance of a Sum of INDEPENDENT Random Variables (Ch 4.7)If ๐‘‹and ๐‘Œare uncorrelated, i.e. ๐ถ๐‘œ๐‘ฃ(๐‘‹, ๐‘Œ) = 0, then๐‘‰[๐‘‹ ยฑ ๐‘Œ] = ๐‘‰[๐‘‹] + ๐‘‰[๐‘Œ]Let ๐‘‹เฌต,โ€ฆ , ๐‘‹เฏกbe ๐‘›independent random variables, then๐ธ[๐‘‹เฌต+ โ‹ฏ + ๐‘‹เฏก] = ๐ธ[๐‘‹เฌต] + โ‹ฏ + ๐ธ[๐‘‹เฏก]and ๐‘‰[๐‘‹เฌต+ โ‹ฏ + ๐‘‹เฏก] = ๐‘‰[๐‘‹เฌต] + โ‹ฏ + ๐‘‰[๐‘‹เฏก]General Formula for Variance of a Linear Combination, aka Sum (Ch 4.7)For RVs ๐‘‹and ๐‘Œwith finite variance,๐‘‰[๐‘Ž๐‘‹ ยฑ ๐‘๐‘Œ] = ๐‘Žเฌถ๐‘‰[๐‘‹] + ๐‘เฌถ๐‘‰[๐‘Œ] + 2๐‘Ž๐‘๐ถ๐‘œ๐‘ฃ(๐‘‹, ๐‘Œ)In general, let ๐‘‹เฌต, โ€ฆ , ๐‘‹เฏกbe random variables, then๐‘‰[๐‘‹เฌต+ โ‹ฏ + ๐‘‹เฏก] = เท เท๐ถ๐‘œ๐‘ฃเตซ๐‘‹เฏœ, ๐‘Œเฏเตฏ = เท ๐‘‰[๐‘‹เฏœ] + เท ๐ถ๐‘œ๐‘ฃ(๐‘‹เฏœ, ๐‘Œเฏ)เฏœเฎทเฏเฏกเฏœเญ€เฌตเฏกเฏเฏกเฏœIn particular,๐‘‰[๐‘‹เฌต+ ๐‘‹เฌถ+ ๐‘‹เฌท] = ๐‘‰[๐‘ฅเฌต] + ๐‘‰[๐‘ฅเฌถ] + ๐‘‰[๐‘ฅเฌท] + 2๐ถ๐‘œ๐‘ฃ(๐‘‹เฌต,๐‘‹เฌถ) + 2๐ถ๐‘œ๐‘ฃ(๐‘‹เฌต, ๐‘‹เฌท) + 2๐ถ๐‘œ๐‘ฃ(๐‘‹เฌถ, ๐‘‹เฌท)Covariance (Ch 4.7)For random variables ๐‘‹and ๐‘Œ, with repsective means ๐ธ[๐‘‹] = ๐œ‡เฏ‘and ๐ธ[๐‘Œ] = ๐œ‡เฏ’, the covariance between ๐‘‹and ๐‘Œis๐ถ๐‘œ๐‘ฃ(๐‘‹, ๐‘Œ) = ๐ธ[(๐‘‹ โˆ’ ๐œ‡เฏ‘)(๐‘Œ โˆ’ ๐œ‡เฏ’)] = ๐ธ[๐‘‹๐‘Œ] โˆ’ ๐œ‡เฏ‘๐œ‡เฏ’= ๐ธ[๐‘‹๐‘Œ] โˆ’ ๐ธ[๐‘‹]๐ธ[๐‘Œ]Correlation (Ch 4.7)The correlation between ๐‘‹and ๐‘Œis๐ถ๐‘œ๐‘Ÿ๐‘Ÿ(๐‘‹, ๐‘Œ) =๐ถ๐‘œ๐‘ฃ(๐‘‹, ๐‘Œ)๐‘†๐ท[๐‘‹]๐‘†๐ท[๐‘Œ]โŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏ =๐ธ[(๐‘‹ โˆ’ ๐œ‡เฏ‘)(๐‘Œ โˆ’ ๐œ‡เฏ’)]เถฅ๐‘‰[๐‘‹]๐‘‰[๐‘Œ]โŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏJoint Probability Mass Function, aka Joint Distribution (Ch 4.3)๐‘เฏ‘,เฏ’(๐‘ฅ, ๐‘ฆ) = ๐‘ƒ(๐‘‹ = ๐‘ฅ, ๐‘Œ = ๐‘ฆ), ๐‘ฅ โˆˆ ๐‘†เฏซ, ๐‘ฆ โˆˆ ๐‘†เฏฌMarginal Distributions (Ch 4.3)If ๐‘‹takes values in a set ๐‘†เฏซand ๐‘Œtakes values in a set ๐‘†เฏฌ, then the marginal distribution of ๐‘ฟis๐‘เฏ‘(๐‘ฅ) = ๐‘ƒ(๐‘‹ = ๐‘ฅ) = เท ๐‘ƒ(๐‘‹ = ๐‘ฅ, ๐‘Œ = ๐‘ฆ)เฏฌโˆˆเฏŒเณคand the marginal distribution of ๐’€is๐‘เฏ’(๐‘ฆ) = ๐‘ƒ(๐‘Œ = ๐‘ฆ) = เท ๐‘ƒ(๐‘‹ = ๐‘ฅ, ๐‘Œ = ๐‘ฆ)เฏซโˆˆเฏŒเณฃTable of Joint PMF and Marginal PMFConditional Probability Mass Function (Ch 4.8)If ๐‘‹and ๐‘Œare two discrete random variables, then the conditional probability mass function of ๐‘Œgiven ๐‘‹ = ๐‘ฅis๐‘ƒ(๐‘Œ = ๐‘ฆ|๐‘‹ = ๐‘ฅ) =๐‘ƒ(๐‘Œ = ๐‘ฆ, ๐‘‹ = ๐‘ฅ)๐‘ƒ(๐‘‹ = ๐‘ฅ)โŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏ=๐‘เฏ‘,เฏ’(๐‘ฅ, ๐‘ฆ)๐‘เฏ‘(๐‘ฅ)โŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏwhen ๐‘ƒ(๐‘‹ = ๐‘ฅ) > 0.Conditional Probability Mass Function for Independent Random Variables(Ch 4.8)When ๐‘‹and ๐‘Œare independent, then the conditional probability of ๐‘Œgiven ๐‘‹ = ๐‘ฅis๐‘ƒ(๐‘Œ = ๐‘ฆ|๐‘‹ = ๐‘ฅ) =๐‘ƒ(๐‘Œ = ๐‘ฆ, ๐‘‹ = ๐‘ฅ)๐‘ƒ(๐‘‹ = ๐‘ฅ)โŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏ= ๐‘ƒ(๐‘Œ = ๐‘ฆ)Conditional Expectation and Variance of ๐’€Given ๐‘ฟ = ๐’™For discrete random variables ๐‘‹and ๐‘Œ, the conditional expectationof ๐‘Œgiven ๐‘‹ = ๐‘ฅis๐ธ[๐‘Œ|๐‘‹ = ๐‘ฅ] = เท ๐‘ฆ๐‘ƒ(๐‘Œ = ๐‘ฆ|๐‘‹ = ๐‘ฅ)เฏฌโˆˆเฏŒเณคand the Conditional Variance of ๐‘Œgiven ๐‘‹ = ๐‘ฅis๐‘‰[๐‘Œ|๐‘‹ = ๐‘ฅ] = ๐ธ[(๐‘Œ โˆ’ ๐ธ[๐‘Œ|๐‘‹ = ๐‘ฅ])เฌถ|๐‘‹ = ๐‘ฅ] = ๐ธ[๐‘Œเฌถ|๐‘‹ = ๐‘ฅ] โˆ’ (๐ธ[๐‘Œ|๐‘‹ = ๐‘ฅ])เฌถMoment Function (Ch 5.2)Let ๐‘‹be a random variable. The ๐‘˜เฏงเฏ›moment function of ๐‘‹is defined as๐ธเตฃ๐‘‹เฏžเตง = เท ๐‘ฅเฏž๐‘ƒ(๐‘‹ = ๐‘ฅ)เฏซโˆˆเฏŒเณฃwhere ๐‘˜ = 1, 2, โ€ฆWhen ๐‘˜ = 1, the expectation ๐ธ[๐‘‹]is the first moment function.Moment Generating Functions MGF (Ch 5.2)Let ๐‘‹be a random variable. The MGF of ๐‘‹is the real-valued function๐‘šเฏ‘(๐‘ก) = ๐ธ[๐‘’เฏงเฏ‘] = เท๐‘’เฏงเฏซ๐‘เฏ‘(๐‘ฅ) = เท ๐‘’เฏงเฏซ๐‘ƒ(๐‘‹ = ๐‘ฅ)เฏซเฏซNote that MGF is a function of ๐‘กand is determined by the PMF ๐‘ƒ(๐‘‹ = ๐‘ฅ).MGF for Geometric DistributionLet ๐‘‹~๐บ๐‘’๐‘œ๐‘š(๐‘), then the MGF of ๐‘‹is๐‘šเฏ‘(๐‘ก) = ๐ธ[๐‘’เฏงเฏ‘] = เท ๐‘’เฏงเฏž(1 โˆ’ ๐‘)เฏžเฌฟเฌต ๐‘ =๐‘๐‘’เฏง1 โˆ’ ๐‘’เฏง(1 โˆ’ ๐‘)โŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏเฎถเฏžเญ€เฌตMGF for Binomial DistributionLet ๐‘‹~๐ต๐‘–๐‘›๐‘œ๐‘š(๐‘›, ๐‘), then the MGF of ๐‘‹is๐‘šเฏ‘(๐‘ก) = ๐ธ[๐‘’เฏงเฏ‘] เท ๐‘’เฏงเฏžเตฌ๐‘›๐‘˜เตฐ ๐‘เฏž(1 โˆ’ ๐‘)เฏกเฌฟเฏž= (๐‘’เฏง๐‘ + 1 โˆ’ ๐‘)เฏกเฏกเฏžเญ€เฌดMGF for Poisson DistributionLet ๐‘‹~๐‘ƒ๐‘œ๐‘–๐‘ (๐œ†), then the MGF of ๐‘‹is๐‘šเฏ‘(๐‘ก) = ๐ธ[๐‘’เฏงเฏ‘] = เท ๐‘’เฏงเฏž๐‘’เฌฟเฐ’๐œ†เฏž๐‘˜!โŽฏโŽฏ = ๐‘’เฐ’เตซเฏ˜เณŸเฌฟเฌตเตฏเฎถเฏžเญ€เฌดProperties of Moment Generating Functions (Ch 5.2)Let ๐‘šเฏ‘(๐‘ก)be the MGF of ๐‘‹ where the ๐‘˜เฏงเฏ›derivative exists, then๐ธเตฃ๐‘‹เฏžเตง = ๐‘šเฏ‘(เฏž)(0), for ๐‘˜ = 1, 2, โ€ฆ1.If ๐‘‹and ๐‘Œare independent random variables, then the MGF of their sum is the product of their MGFs,๐‘šเฏ‘เฌพเฏ’(๐‘ก) = ๐ธเตฃ๐‘’เฏง(เฏ‘เฌพเฏ’)เตง = ๐ธ[๐‘’เฏงเฏ‘]๐ธ[๐‘’เฏงเฏ’] = ๐‘šเฏ‘(๐‘ก)๐‘šเฏ’(๐‘ก)2.Let ๐‘‹be a random variable with MGF ๐‘šเฏ‘(๐‘ก)and constants ๐‘Ž โ‰  0and ๐‘, then๐‘šเฏ”เฏ‘เฌพเฏ•(๐‘ก) = ๐ธเตฃ๐‘’เฏง(เฏ”เฏ‘เฌพเฏ•)เตง = ๐‘’เฏงเฏ•๐ธ[๐‘’เฏ”เฏงเฏ‘] = ๐‘’เฏงเฏ•๐‘šเฏ‘(๐‘Ž๐‘ก)3.MGFs uniquely determine the underlying probability distribution. That is, if two random variables have the same MGF, then they have the same probability distribution.4.Midterm 2 Cheat Sheet (page 2)Friday, November 15, 20246:17 PMSTAT 550 Applied Probability Page 1
Background image