hh@uLE<£{°£{°zRrrJ ʹˁ ʂʷˍʹ ppH}±¥Ú zR ppH}VTTarrJ zR\S ± ±C3 ±«¸VTTa= \S rrJ=«¸VTTazRrrJSECTION ´!: Completing The Square(&3 >4: 2&0* 9-*8* 5*7+*(9 86:&7* 97.342.&18$9o find the last term in aperfect square trinomialuse the rule# the last termof a perfect squaretrinomial ishalf of themiddle term squared¶
hh@uLE<£{°£{°zRrrJ ʹˁ ʂʷˍʹ ppH}±¥Ú zR ppH}VTTarrJ zR\S ± ±C3 ±«¸VTTa= \S rrJ=«¸VTTazRrrJSECTION ´!: Completing The Square(&3 >4: 2&0* 9-*8* 5*7+*(9 86:&7* 97.342.&18$9o find the last term in aperfect square trinomialuse the rule# the last termof a perfect squaretrinomial ishalf of themiddle term squared¶
hh@uLE<£{°£{°zRrrJ ʹˁ ʂʷˍʹ ppH}±¥Ú zR ppH}VTTarrJ zR\S ± ±C3 ±«¸VTTa= \S rrJ=«¸VTTazRrrJSECTION ´!: Completing The Square9here are many ways to find themax or minof aquadratic function³ 9he two methods taught in thislesson are#°¶completing the square´¶partial factoring<e will look at each method in detail³
hh@uLE<£{°£{°zRrrJ ʹˁ ʂʷˍʹ ppH}±¥Ú zR ppH}VTTarrJ zR\S ± ±C3 ±«¸VTTa= \S rrJ=«¸VTTazRrrJSECTION ´!: Completing The SquareGoal!:,o fromstandardtovertex form³4nce in vertex form´themax or minpoint iseasy to find because thevertexis simply²h³k±³
hh@uLE<£{°£{°zRrrJ ʹˁ ʂʷˍʹ ppH}±¥Ú zR ppH}VTTarrJ zR\S ± ±C3 ±«¸VTTa= \S rrJ=«¸VTTazRrrJ(onvert the following equation intovertex formbycompleting the square¶
hh@uLE<£{°£{°zRrrJ ʹˁ ʂʷˍʹ ppH}±¥Ú zR ppH}VTTarrJ zR\S ± ±C3 ±«¸VTTa= \S rrJ=«¸VTTazRrrJSECTION ´!: Completing The Square<hat is thevertexandaxis of symmetryoftheparabola$ .s the vertex amax or minpoint$V²h³ k±#V²·»³ ·°°±´A¶O¶S¶ = h= ·»¶since the ‘a’ value ispositive´ the parabola opensupwardso thevertexis aminimum³
hh@uLE<£{°£{°zRrrJ ʹˁ ʂʷˍʹ ppH}±¥Ú zR ppH}VTTarrJ zR\S ± ±C3 ±«¸VTTa= \S rrJ=«¸VTTazRrrJ(onvert the following equation intovertex formbycompleting the square¶
hh@uLE<£{°£{°zRrrJ ʹˁ ʂʷˍʹ ppH}±¥Ú zR ppH}VTTarrJ zR\S ± ±C3 ±«¸VTTa= \S rrJ=«¸VTTazRrrJSECTION ´!: Completing The Square<hat is thevertexand theaxis of symmetryof theparabola$ .s the vertex amax or minpoint$;ertex#²h³ k±→·±´ µ ¸&³4³8³ #x = h→ x & ±9he vertex is aminimum pointbecause the parabolaopens up ²a䠚¸±³
hh@uLE<£{°£{°zRrrJ ʹˁ ʂʷˍʹ ppH}±¥Ú zR ppH}VTTarrJ zR\S ± ±C3 ±«¸VTTa= \S rrJ=«¸VTTazRrrJSECTION ´!: Completing The Square<hat is thevertexand theaxis of symmetryof theparabola$ .s the vertex amax or minpoint$;ertex#²h³ k±→·±¹º´ µº»¹¼¸ &³4³8³ #x = h→ x & ±¹º9he vertex is amaximum pointbecause the parabolaopens down ²a䠘¸±³
Total Profit = ²profit per scarf±²number of scarves sold±hh@uLE<£{°£{°zRrrJ ʹˁ ʂʷˍʹ ppH}±¥Ú zR ppH}VTTarrJ zR\S ± ±C3 ±«¸VTTa= \S rrJ=«¸VTTazRrrJAPPLICATION PROBLEM!:2aximizing 5rofit9wo high school students areknitting scarves to sell at the craftshow to raise money for the animalshelters in their community³9hefabricfor each scarfcosts ¿À¶9hey wereplanning tosellthe scarves for¿°¸each´ the same as last year whenthey sold»¸ scarves³ -owever´ theyknow that if they raise the price´ theywill make more profit´ even if theyend up selling fewer scarves³9heyhave been told that for every¼¸cent increasein the price´ they canexpect tosell four fewer scarves¶What selling price will maximize theirprofit and what will the profit be?Step°# +ind an equation to modeltheir total profit°1etxrepresent the number of ³¼¸ increasesÁRemember# in the first bracket . substituted allthe values aboutmoney and in the secondbracket . substituted all the values aboutquantity³ 9hen . usedFOILto expand and simplify³
hh@uLE<£{°£{°zRrrJ ʹˁ ʂʷˍʹ ppH}±¥Ú zR ppH}VTTarrJ zR\S ± ±C3 ±«¸VTTa= \S rrJ=«¸VTTazRrrJAPPLICATION PROBLEM!:2aximizing 5rofitStep ´# +ind the max value of the function by eithercompleting the squareor by using partial factoring³Vertex ²°³ °À´±x = °represents the number of ³»¾increasesy = °À´represents the maximum profit
hh@uLE<£{°£{°zRrrJ ʹˁ ʂʷˍʹ ppH}±¥Ú zR ppH}VTTarrJ zR\S ± ±C3 ±«¸VTTa= \S rrJ=«¸VTTazRrrJAPPLICATION PROBLEM!:2aximizing 5rofit<hatselling pricewill maximize their profitand what will theprofitbe$V±²³ ²!6´µx = ² represents the number of ° 5¶ increasesy = ²!6´ represents their profitHow do we find theselling price that will givethe maximum profit?±°² ³ ´µ² $"$ ±°²´µ²