Section 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°hanges in States(°ontinued)ѴWhen more energy is added to water, gaseous state iseventually reachedѴ±ntermolecular distance increases and intermolecularinteraction decreasesѴMore energy is required to overcome the covalentbonds and decompose the water molecules into theircomponent atomsSection 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Dipole–Dipole ´orcesѴ´orces that act between polar moleculesѴ³ipole–dipole attraction: Electrostatic attractionbetween molecules with dipole momentsѴMolecules orient themselves in a way that the positiveand negative ends are close to each otherѴ±n a condensed state, dipoles find the bestcompromise between attraction and repulsionSection 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°haracteristics of Dipole–Dipole ´orcesѴ²pproximately 1% as strong ascovalent or ionic bondsѴStrength of the forcesdecreases as the distancebetween the dipoles increases
Section 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±µydrogen ³ondingѴSignificantly strong dipole–dipole forcesѴPrevalent in molecules that have a hydrogen atombound to a highly electronegative atomѴ°ausative factorsѴPolarity of the bondѴProximity of the dipolesѴ±nfluenced by the size of the hydrogen atomѴ±nfluences physical properties of moleculesSection 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.3- µydrogen ³onding in WaterSection 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.4- ³oiling Points of the °ovalent µydrides ofthe Elements in ¶roups 4², 5², 6², and 7²
Section 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±!London Dispersion ´orcesѴ´orces that exist among noble gas atoms andnonpolar moleculesѴ²n accidental instantaneous dipole that occurs inan atom can induce a similar dipole in aneighboring atomѴ!Leads to an interatomic attraction that is weak andshort-livedѴ°an be significant for large atomsSection 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±!London Dispersion ´orces(°ontinued)ѴPolarizability - ±ndicates the ease with which theelectron cloud of an atom can be distorted to givea dipolar charge distributionѴ²s the atomic number increases, the number ofelectrons increasesѴ±ncreases the probability of the occurrence of momentarydipole interactionsѴUsed by nonpolar molecules to attract each otherSection 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°ritical ThinkingѴYou have learned the difference betweenintermolecular forces and intramolecular bondsѴWhat if intermolecular forces were stronger thanintramolecular bonds?ѴWhat differences could you observe in the world?
Section 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±X-Ray ²nalysis of SolidsѴX-ray diffraction: µelps determine the structuresof crystalline solidsѴDiffraction occurs due to:Ѵ°onstructive interference when parallel beam wavesare in phaseѴDestructive interference when waves are out of phaseSection 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±³ragg EquationѴUsed to determine interatomic spacingsѴ°onsider two in-phase waves being reflected byatoms in two different layers in a crystalSection 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±³ragg Equation(°ontinued 1)Ѵ±f the sum ofxyandyzgives the extra distancetraveled by the lower wave, the waves will be in phaseafter reflection ifѴ`b]is an integerѴλis the wavelength of the X rays
Section 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±³ragg Equation(°ontinued 2)ѴUsing trigonometry, it can be shown thatѴNPKis the distance between the atomsѴșis the angle of incidence and reflectionѴ°ombining equations 10.1 and 10.2 gives ³ragg’sequationSection 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±DiffractometerѴUsed to conduct X-ray analysis of crystalsѴRotates the crystal based on the X-ray beamѴ°ollects data produced by the scattering of X rays fromthe various planes of atoms in the crystalѴµelps gather data on bond lengths and anglesSection 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.1 - Using the ³ragg EquationѴX rays of wavelength 1.54 · were used to analyzean aluminum crystalѴ² reflection was produced atș=19.3 degreesѴ²ssuming`b] =1, calculate the distanceNPKbetween theplanes of atoms producing this reflection
Section 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.2 - SolutionѴDensity is mass per unit volumeѴWe need to know how many silver atoms occupy agiven volume in the crystalѴThe structure is cubic closest packed, which means theunit cell is face-centered cubicѴWe must find the volume of this unit cell for silver andthe net number of atoms it containsSection 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.2 - Solution(°ontinued 1)ѴNote that in this structure the atoms touch alongthe diagonals for each face and not along theedges of the cubeѴ!Length of the diagonal isir+ 2ir+ir, or 4irѴWe use this fact to find the length along the edge ofthe cube by the Pythagorean theoremSection 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.2 - Solution(°ontinued 2)ѴSinceir= 144 pm for a silver atom,
Section 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.26- Structure of QuartzSection 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±SilicatesѴ°ompounds related to silicaѴ³ased on interconnected SiO4tetrahedraѴ´ound in rocks, soils, and claysѴPossess O/Si ratios greater than 2:1 and containsilicon–oxygen anionsѴ°ations are required to balance the excess negativecharge to form neutral silicatesSection 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Silicates(°ontinued)Ѵµlass: ²morphous solid that is formed when silicais heated above 1600° and cooled rapidlyѴµomogeneous, noncrystalline frozen solutionѴ°ommon glass results when substances like Na2°O3are added to the silica melt and then cooledѴProperties vary based on the additives
Section 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.31 (a)- °harge °arriers in the P-Type andN-Type RegionsSection 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.31 (Fb) and (c)- Reverse and ´orward ³iasReverse bias´orward biasSection 10.6#(bd_^`RMNGLNImu^`>CE@ir 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Molecular SolidsѴ°haracterized by strong covalent bonding withinmolecules and weak bonding between moleculesѴ±ntermolecular forces depend on the nature of themoleculesѴMolecules that do not have a dipole moment possess!London dispersion forcesѴMolecules with dipole moments have greaterintermolecular forces when hydrogen bonding ispossible
Section 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.34 (a), (Fb), and (c)- Tetrahedral µolesThe location (red X) of atetrahedral holeOne of thetetrahedral holesSection 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.35- Octahedral µolesThe locations (gray X) of the octahedralholesRepresentation of the unit cell for solidNa°lSection 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.3 - Determining the Number of±ons in a Unit °ellѴDetermine the net number of Na+and °l–ions inthe sodium chloride unit cell
Section 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.3 - SolutionѴThe °l–ions are cubic closest packed and thusform a face-centered cubic unit cellѴThere is a °l–ion on each corner and one at thecenter of each face of the cubeѴThe net number of °l–ions present in a unit cell isSection 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.3 - Solution(°ontinued 1)ѴThe Na+ions occupy the octahedral holes locatedin the center of the cube and midway along eachedgeѴThe Na+ion in the center of the cube is containedentirely in the unit cell, whereas those on the edgesare shared by four unit cellsSection 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.3 - Solution(°ontinued 2)ѴSince the number of edges in a cube is 12, the netnumber of Na+ions present is:ѴWe have shown that the net number of ions in aunit cell is 4 Na+ions and 4 °l–ionsѴ²grees with the 1:1 stoichiometry of sodium chloride
Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Vapor Pressure and !Liquids(°ontinued)ѴVapor pressure increases significantly withtemperatureѴ² molecule must have sufficient kinetic energy toovercome intermolecular forcesSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Vapor Pressure versus TemperatureѴProduces a straight line when plotted on a graphѴ279- Temperature in KelvinѴΔµvap- Enthalpy of vaporizationѴ057- Universal gas constantѴ±- °onstant characteristic of a given liquidѴln - Natural logarithm of the vapor pressureSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Vapor Pressure versus Temperature(°ontinued)ѴEquation 10.4 is the equation for a straight line ofthe formy=_ax + FKMH
Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Example 10.5 - Determining Enthalpies of VaporizationѴUsing the plots in the figuredeterminewhether wateror diethyl ether has thelarger enthalpy ofvaporizationSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Example 10.5 - SolutionѴWhen ln(-24vap) is plotted versus 1/279, the slope ofthe resulting straight line isѴThe slopes of the lines for water and diethyl etherare both negative, as expected, and that the linefor ether has the smaller slopeѴEther has the smaller value ofΔµvapѴThis makes sense because the hydrogen bonding in watercauses it to have a relatively large enthalpy of vaporizationSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±The °lausius–°lapeyron EquationѴWhen the values ofΔµvapand-24vapat onetemperature are known, it is possible to calculatethe value of-24vapat another temperatureѴ²ssume that±does not depend on temperatureѴ²t temperatures2791and2792
Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.6 - Solution(°ontinued)ѴTaking the antilog of both sides givesSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±SublimationѴProcess in which solids change to gases withoutpassing through the liquid stateѴOccurs with dry ice and iodineSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°hanges of StateѴ¶eating curve: Plot of temperature versus timefor a process where energy is added at a constantrateѴWhen a solid is heated, it melts to form a liquidѴ±f the heating continues, it will eventually form the vaporphaseѴ¶eat of fusion (enthalpy of fusion): °hange inenthalpy at the melting point of a solid
Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.42- µeating °urve for a Specific Quantity ofWaterSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±2TaFble 10.9- Melting Points and Enthalpies of ´usion forSeveral Representative SolidsSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Melting PointѴThe temperature at whichthe solid and liquid haveidentical vapor pressures
Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.44- ±nteraction of Solid and !Liquid Water inthe Vapor StateSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Temperature and Vapor Pressure - °ase 1ѴTemperature at which the vapor pressure of thesolid is greater than that of the liquidѴThe solid releases vapor, attempting to achieveequilibriumѴThe liquid attempts to achieve equilibrium byabsorbing vaporѴNet effect - °onversion from solid to liquid through thevapor phaseѴTemperature would be above the melting point of iceSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Temperature and Vapor Pressure - °ase 2ѴTemperature at which vapor pressure of the solidis less than that of the liquidѴ!Liquid will disappear, and the amount of ice willincreaseѴSolid will achieve equilibrium with the vaporѴTemperature should be below the melting point of ice
Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Temperature and Vapor Pressure - °ase 3ѴTemperature at which the vapor pressures of thesolid and liquid are identicalѴ°oexist in the apparatus at equilibrium with the vaporѴ$ormal melting point: Temperature at which thevapor pressures of the solid and liquid states areidentical at 1 atmosphere of pressureѴRepresents the freezing point that enables existence of solidand liquid statesSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Temperature and Vapor Pressure - °ase 3(°ontinued 1)Ѵ$ormal Fboiling pointѴTemperature at which thevapor pressure of the liquid is1 atmosphereѴ°hanges of state do notalways occur at theboiling or melting pointSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Temperature and Vapor Pressure - °ase 3(°ontinued 2)Ѵ1Supercooledwater remains in the liquid state below 0°° and 1 atm of pressureѴWater can besuperheatedif it is heated rapidlyѴVapor pressure in the liquid is greater than atmosphericpressureѴ³ubbles formed burst before reaching the surface, resultingin bumping
Section 10.9-24TU>CE@jsRMN ¶UVX>CE@STir>CE@_ajs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Phase Diagram for Water - ObservationsѴThe solid/liquid boundary line has a negativeslopeѴ²t the melting point, liquid and solid are indynamic equilibriumѴWhen pressure is applied, the volume is reducedѴ² given mass of ice has more volume at 0° than thesame mass of water in liquid stateѴ´reezing point of water is less than 0° when externalpressure is greater than 1 atmSection 10.9-24TU>CE@jsRMN ¶UVX>CE@STir>CE@_ajs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Phase Diagram for Water - ²pplicationsѴ±ce skatingѴNarrow blades of skates exert a large amount ofpressureѴ´rictional heat caused when skates moves over icecontributes to further melting of iceѴ²s the blades pass by, the liquid refreezesѴ!Low density of iceѴ°auses ice formed on rivers and lakes to float, and thishelps prevent water bodies from freezing in the winterSection 10.9-24TU>CE@jsRMN ¶UVX>CE@STir>CE@_ajs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±2TaFble 10.10- ³oiling Point of Water at Various !Locations