ZumdahlCh10 - Annotated Notes

.pdf
School
Rutgers University**We aren't endorsed by this school
Course
447 380
Subject
Chemistry
Date
Dec 16, 2024
Pages
44
Uploaded by GrandDugongMaster974
&hapter "!/OWVV[ZZOJYXX GTSJ 6UTTRQOJYXX*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°hapter 10279>CE@FKMH^`RMN bd_RS ±bd_`b]ltRMN`b]ltjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Ѵ(10.1) ±ntermolecular forcesѴ(10.2) The liquid stateѴ(10.3) ²n introduction to structures and typesof solidsѴ(10.4) Structure and bonding in metalsѴ(10.5) °arbon and silicon: Network atomicsolids°hapter 10279>CE@FKMH^`RMN bd_RS ±bd_`b]ltRMN`b]ltjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Ѵ(10.6) Molecular solidsѴ(10.7) ±onic solidsѴ(10.8) Vapor pressure and changes of stateѴ(10.9) Phase diagrams
Background image
Section 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.1- Schematic Representations of the ThreeStates of MatterSection 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±ntramolecular and ±ntermolecular ³ondingѴ±ntramolecular bonding - Occurs within moleculesѴ±ondensed statesof matter - !Liquids and solidsѴ´orces involvedѴ°ovalent bondingѴ±onic bondingѴ²ntermolecular Fbonding: Occurs between molecules°opyright © °engage !Learning. ²ll rights reserved5Section 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°hanges in StatesѴWhen a substance changes from solid to liquid togas, the molecules remain intactѴ°aused by the changes in the forces among themolecules and not within the moleculesѴWhen energy is added to ice, the motion of themolecules increasesѴResults in greater movement and disorder characteristic ofliquid water
Background image
Section 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°hanges in States(°ontinued)ѴWhen more energy is added to water, gaseous state iseventually reachedѴ±ntermolecular distance increases and intermolecularinteraction decreasesѴMore energy is required to overcome the covalentbonds and decompose the water molecules into theircomponent atomsSection 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Dipole–Dipole ´orcesѴ´orces that act between polar moleculesѴ³ipole–dipole attraction: Electrostatic attractionbetween molecules with dipole momentsѴMolecules orient themselves in a way that the positiveand negative ends are close to each otherѴ±n a condensed state, dipoles find the bestcompromise between attraction and repulsionSection 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°haracteristics of Dipole–Dipole ´orcesѴ²pproximately 1% as strong ascovalent or ionic bondsѴStrength of the forcesdecreases as the distancebetween the dipoles increases
Background image
Section 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±µydrogen ³ondingѴSignificantly strong dipole–dipole forcesѴPrevalent in molecules that have a hydrogen atombound to a highly electronegative atomѴ°ausative factorsѴPolarity of the bondѴProximity of the dipolesѴ±nfluenced by the size of the hydrogen atomѴ±nfluences physical properties of moleculesSection 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.3- µydrogen ³onding in WaterSection 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.4- ³oiling Points of the °ovalent µydrides ofthe Elements in ¶roups 4², 5², 6², and 7²
Background image
Section 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±!London Dispersion ´orcesѴ´orces that exist among noble gas atoms andnonpolar moleculesѴ²n accidental instantaneous dipole that occurs inan atom can induce a similar dipole in aneighboring atomѴ!Leads to an interatomic attraction that is weak andshort-livedѴ°an be significant for large atomsSection 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±!London Dispersion ´orces(°ontinued)ѴPolarizability - ±ndicates the ease with which theelectron cloud of an atom can be distorted to givea dipolar charge distributionѴ²s the atomic number increases, the number ofelectrons increasesѴ±ncreases the probability of the occurrence of momentarydipole interactionsѴUsed by nonpolar molecules to attract each otherSection 10.1°`b]ltRMNir_abd_^`RMNGLNImu^`>CE@ir ²bd_irGLNIRMNjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°ritical ThinkingѴYou have learned the difference betweenintermolecular forces and intramolecular bondsѴWhat if intermolecular forces were stronger thanintramolecular bonds?ѴWhat differences could you observe in the world?
Background image
Section 10.2279TURMN !"'UVXmhqmuUVXNPK 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±!LiquidsѴPossess low compressibility, lack rigidity, and havehigh density compared with gasesѴ1Surface tension: Resistance of a liquid to anincrease in its surface areaѴ!Liquids with large intermolecular forces tend to havehigh surface tensions°opyright © °engage !Learning. ²ll rights reserved16Section 10.2279TURMN !"'UVXmhqmuUVXNPK 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±!Liquids(°ontinued)ѴPolar liquids exhibit capillary actionѴ±apillary action: Spontaneous rising of a liquid in anarrow tubeѴ°ohesive forces - ±ntermolecular forces among the moleculesof the liquidѴ²dhesive forces - ´orces between the liquid molecules andthe walls of the container°opyright © °engage !Learning. ²ll rights reserved17Section 10.2279TURMN !"'UVXmhqmuUVXNPK 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°oncave Meniscus ´ormed by Polar WaterѴ²dhesive forces toward glass are stronger thancohesive forces in the liquid°opyright © °engage !Learning. ²ll rights reserved18
Background image
Section 10.2279TURMN !"'UVXmhqmuUVXNPK 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°onvex Meniscus ´ormed by Nonpolar !Liquid MercuryѴ°ohesive forces in the liquid are stronger thanadhesive forces toward glass°opyright © °engage !Learning. ²ll rights reserved19Section 10.2279TURMN !"'UVXmhqmuUVXNPK 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±ViscosityѴMeasure of a liquid’s resistance to flowѴ!Liquids with large intermolecular forces andcomplex molecules tend to be highly viscousѴExample - ¶lycerol and grease°opyright © °engage !Learning. ²ll rights reserved20Section 10.2279TURMN !"'UVXmhqmuUVXNPK 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Structural Model for !LiquidsѴµave strong intermolecular forces and significantmolecular motionsѴ°ontain a large number of regionsѴ²rrangement of the components are similar to thosethat are present in solids, but with more disorderѴµoles are present in a few regionsѴRegions are subject to rapid fluctuations
Background image
Section 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°lassification of SolidsѴ´morphous solids: µave considerable disorder intheir structuresѴ±rystalline solids: °haracterized by highly regulararrangement of componentsѴPositions of components are represented by latticesѴ!"attice: Three-dimensional system of points designatingpositions of components that make up the substanceѴ3Unit cell: Smallest repeating unit of a lattice°opyright © °engage !Learning. ²ll rights reserved22Section 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.9- Three °ubic Unit °ells and the°orresponding !Lattices°opyright © °engage !Learning. ²ll rights reserved23Section 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.9- Three °ubic Unit °ells and the°orresponding !Lattices(°ontinued)°opyright © °engage !Learning. ²ll rights reserved24
Background image
Section 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±X-Ray ²nalysis of SolidsѴX-ray diffraction: µelps determine the structuresof crystalline solidsѴDiffraction occurs due to:Ѵ°onstructive interference when parallel beam wavesare in phaseѴDestructive interference when waves are out of phaseSection 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±³ragg EquationѴUsed to determine interatomic spacingsѴ°onsider two in-phase waves being reflected byatoms in two different layers in a crystalSection 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±³ragg Equation(°ontinued 1)Ѵ±f the sum ofxyandyzgives the extra distancetraveled by the lower wave, the waves will be in phaseafter reflection ifѴ`b]is an integerѴλis the wavelength of the X rays
Background image
Section 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±³ragg Equation(°ontinued 2)ѴUsing trigonometry, it can be shown thatѴNPKis the distance between the atomsѴșis the angle of incidence and reflectionѴ°ombining equations 10.1 and 10.2 gives ³ragg’sequationSection 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±DiffractometerѴUsed to conduct X-ray analysis of crystalsѴRotates the crystal based on the X-ray beamѴ°ollects data produced by the scattering of X rays fromthe various planes of atoms in the crystalѴµelps gather data on bond lengths and anglesSection 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.1 - Using the ³ragg EquationѴX rays of wavelength 1.54 · were used to analyzean aluminum crystalѴ² reflection was produced atș=19.3 degreesѴ²ssuming`b] =1, calculate the distanceNPKbetween theplanes of atoms producing this reflection
Background image
Section 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.1 - SolutionѴTo determine the distance between the planes,use the ³ragg equationѴ`b]= 1Ѵλ= 1.54 ·Ѵș= 19.3 degreesSection 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Types of °rystalline SolidsѴ²onic solids: Possess ions at the lattice points thatdescribe the structure of the solidѴ#olecular solids: Possess discrete covalentlybonded molecules at the lattice pointsѴ´tomic solids: Possess atoms at the lattice pointsthat describe the structure of the solid°opyright © °engage !Learning. ²ll rights reserved32Section 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.22- Examples of Three Types of °rystallineSolids°opyright © °engage !Learning. ²ll rights reserved33
Background image
Section 10.3³`b] °`b]ltirbd_NPKmuGLNIltUVXbd_`b] ltbd_ 168ltirmuGLNIltmuirRMNjs >CE@`b]NPK 279yikfRMNjs bd_RS 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°lassification of ²tomic SolidsѴMetallic solids - Possess a special type ofdelocalized nondirectional covalent bondsѴNetwork solids - Possess atoms bonded by strongdirectional covalent bondsѴ³onds lead to giant molecules of atomsѴ¶roup 8² solids - Possess noble gas elements thatare attracted to each other by !London dispersionforcesSection 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°losest Packing ModelѴ±losest packingarrangementѴ°haracterized by layers of uniform hard spheres thatefficiently use available spaceѴEach sphere is surrounded by six othersѴTypes of arrangementѴThe>CE@FKMH>CE@arrangementѴThe>CE@FKMHGLNIarrangement°opyright © °engage !Learning. ²ll rights reserved35Section 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±The>CE@FKMH>CE@²rrangementѴSpheres in every third layer lie directly overspheres in the first layerѴResulting structure is called thehexagonalclosest packed (hcp) structure
Background image
Section 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.14- µexagonal °losest PackingSection 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±ѴNo spheres in the third layer lie over ones in thefirst layerѴResulting structure is called thecuFbic closestpacked (ccp) structureThe>CE@FKMHGLNI²rrangementSection 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.15- °ubic °losest Packing
Background image
Section 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Nearest Neighbors of a SphereѴEach sphere has 12equivalent nearestneighbors°opyright © °engage !Learning. ²ll rights reserved40Section 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Net Number of Spheres in a ´ace-°entered °ubic Unit°ellѴ² unit cell is defined by the centers of the sphereson the corners of the cubeѴNet number of spheres in a face-centered cubicunit would be°opyright © °engage !Learning. ²ll rights reserved41Number ofcorners in acubeNumber ofspheres thatlie inside aunit cellNumberof facesin a cubeNumber of centralspheres that lie insidea unit cellSection 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.2 - °alculating the Density of a°losest Packed SolidѴSilver crystallizes in a cubic closest packedstructureѴThe radius of a silver atom is 144 pmѴ°alculate the density of solid silver
Background image
Section 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.2 - SolutionѴDensity is mass per unit volumeѴWe need to know how many silver atoms occupy agiven volume in the crystalѴThe structure is cubic closest packed, which means theunit cell is face-centered cubicѴWe must find the volume of this unit cell for silver andthe net number of atoms it containsSection 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.2 - Solution(°ontinued 1)ѴNote that in this structure the atoms touch alongthe diagonals for each face and not along theedges of the cubeѴ!Length of the diagonal isir+ 2ir+ir, or 4irѴWe use this fact to find the length along the edge ofthe cube by the Pythagorean theoremSection 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.2 - Solution(°ontinued 2)ѴSinceir= 144 pm for a silver atom,
Background image
Section 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.2 - Solution(°ontinued 3)ѴThe volume of the unit cell isNPK3, which is (407pm)3, or 6.74×107pm3Ѵ°onverting this to cubic centimeters,Section 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.2 - Solution(°ontinued 4)ѴSince we know that the net number of atoms inthe face-centered cubic unit cell is 4, we have 4silver atoms contained in a volume of 6.74×10–23cm3ѴTherefore, the density isSection 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±³onding Models for MetalsѴ² successful bonding model for metals mustconsider:ѴMalleabilityѴDuctilityѴEfficient and uniform conduction of heat andelectricity°opyright © °engage !Learning. ²ll rights reserved48
Background image
Section 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Electron Sea ModelѴEnvisions a regular array of metal cations in a seaof valence electronsѴMobile electrons conduct heat and electricityѴMetal ions freely move around as the metal ishammered into a sheet or drawn into a wireSection 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.8 (a) and (Fb)- Depiction of Electron SeaModelRepresentation of an alkali metal (¶roup 1²)with one valence electronRepresentation of an alkaline earth metal(¶roup 2²) with two valence electronsSection 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±³and Model or Molecular Orbital (MO) ModelѴElectrons are assumed to travel around the metalcrystal in molecular orbitals formed from thevalence atomic orbitals of the metal atoms°opyright © °engage !Learning. ²ll rights reserved51
Background image
Section 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.19- Molecular Orbital Energy !Levels ProducedWhen Various Numbers of ²tomic Orbitals ±nteract°opyright © °engage !Learning. ²ll rights reserved52Section 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.20- Representation of Energy !Levels in aMagnesium °rystal°opyright © °engage !Learning. ²ll rights reserved53Section 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Metal ²lloysѴ´lloy: Substance that contains a mixture ofelements and possesses metallic propertiesѴ1SuFbstitutional alloy: Some host metal atoms arereplaced by other metal atoms of similar sizeѴ²nterstitial alloy: Some of the interstices in the closestpacked metal structure are occupied by small atoms°opyright © °engage !Learning. ²ll rights reserved54
Background image
Section 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 9.21- Two Types of ²lloys°opyright © °engage !Learning. ²ll rights reserved55Section 10.4168ltirmuGLNIltmuirRMN >CE@`b]NPK ´bd_`b]NPKUVX`b]ST UVX`b] #(RMNlt>CE@^`js*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nfluence of °arbon on the Properties of SteelѴMild steel - °ontains less than 0.2% carbonѴMalleable and ductileѴUsed for nails, cables, and chainsѴMedium steel - °ontains 0.2 to 0.6% carbonѴUsed in rails and structural steel beamsѴµigh-carbon steel - °ontains 0.6 to 1.5% carbonѴTough and hardѴUsed for springs, tools, and cutlerySection 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Network SolidsѴ²tomic solids that contain directional covalentbondsѴ´orm solids that are viewed as giant moleculesѴPropertiesѴ³rittle in natureѴ±neffective conductors of heat and electricity
Background image
Section 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±DiamondѴEach carbon atom is surrounded by a tetrahedralarrangement of other carbon atoms to form ahuge moleculeѴStructure fits the characteristics of the localizedelectron modelѴ°ovalent bonds result in a stable structureѴ´ormed by the overlap ofjsikf3hybridized carbon atomicorbitalsSection 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.22 (a)- The Structure of Diamond°opyright © °engage !Learning. ²ll rights reserved59Section 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Diamond(°ontinued)ѴStructure according to the MO modelѴ² large gap between the filled and empty levels existsѴElectron transfer is difficultѴDiamond is not expected to be a good electrical conductorѴUsed in industrial cutting implementsѴ¶raphite can be converted to diamond by applying150,000 atm of pressure at 2800°
Background image
Section 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.23 (a)- Partial Representation of theMolecular Orbital Energies in Diamond°opyright © °engage !Learning. ²ll rights reserved61Section 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±¶raphiteѴSlippery, black, and a conductor of heat andelectricityѴStructure is based on layers of carbon atomsarranged in fused six-membered ringsѴEach carbon atom in a layer is surrounded by threeother carbon atoms in a trigonal planar arrangementwith 120-degree bond anglesSection 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±¶raphite(°ontinued)Ѵjsikf2hybridization is predicted by the localizedelectron modelѴThreejsikf2orbitals on each carbon atom formσbondswith three other carbon atomsѴOne 2ikforbital on each carbon remains unhybridizedand is perpendicular to the planeѴUsed as a lubricant in locksѴSlipperiness is due to the strong bonding within thelayers of carbon atoms rather than between the layers
Background image
Section 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.22 (Fb)- The Structure of ¶raphiteSection 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.24 (a) and (Fb)- TheikfOrbitals and theʌ-³onding Network in ¶raphite°opyright © °engage !Learning. ²ll rights reserved65Section 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±SiliconѴ²n important constituent of the compounds thatform the earth’s crustѴStable silicon compounds involve chains withsilicon–oxygen bondsѴ1Silica (1Si&2): ´undamental silicon–oxygen compoundѴStructureѴSilicon atom satisfies the octet rule by forming singlebonds with four oxygen atoms
Background image
Section 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.26- Structure of QuartzSection 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±SilicatesѴ°ompounds related to silicaѴ³ased on interconnected SiO4tetrahedraѴ´ound in rocks, soils, and claysѴPossess O/Si ratios greater than 2:1 and containsilicon–oxygen anionsѴ°ations are required to balance the excess negativecharge to form neutral silicatesSection 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Silicates(°ontinued)Ѵµlass: ²morphous solid that is formed when silicais heated above 1600° and cooled rapidlyѴµomogeneous, noncrystalline frozen solutionѴ°ommon glass results when substances like Na2°O3are added to the silica melt and then cooledѴProperties vary based on the additives
Background image
Section 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.28 (a) and (Fb)- Two-DimensionalRepresentations of Quartz °rystal and Quartz ¶lassQuartz °rystalQuartz ¶lassSection 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.5- °ompositions of Some °ommon Types of¶lassSection 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°eramicsѴMade from clays and hardened by firing at hightemperaturesѴNonmetallic materials that are strong, brittle, andresistant to heat and attack by chemicalsѴµeterogeneous in nature°opyright © °engage !Learning. ²ll rights reserved72
Background image
Section 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Structure of °layѴ´ormed by the weathering action of water andcarbon dioxide on the mineral feldsparѴ´eldspar - ²n aluminosilicate that weathers to formkaoliniteѴaolinite - °onsists of tiny thin platelets with the empiricalformula ²l2Si2O5(Oµ)4ѴPlatelets interlock as the clay driesѴDuring firing, silicates and cations form a glass thatbinds the crystals of kaolinite°opyright © °engage !Learning. ²ll rights reserved73Section 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Uses of °eramicsѴ°onstruction of jet and automobile enginesѴ´lexible ceramics can be obtained by adding smallamounts of organic polymersѴOrganic polymers are used to produce durable engineparts, flexible superconducting wires andmicroelectronic devices, and prosthetic devicesSection 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±SemiconductorsѴ°onduct only a slight electric current at roomtemperatureѴShow increased conductivity at higher temperaturesѴTypesѴn-type semiconductorѴSubstance whose conductivity is increased by doping theelement with atoms that have more valence electrons thanthe atoms in the host crystal°opyright © °engage !Learning. ²ll rights reserved75
Background image
Section 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Semiconductors(°ontinued)Ѵp-type semiconductor: Semiconductors are dopedwith atoms that have fewer valence electrons than theatoms in the host crystalѴSubstance becomes a better conductorѴ² p-type and an n-type semiconductor can beconnected to form ap–n junctionѴMakes an excellent rectifierѴRectifier - Device that produces a pulsating direct currentfrom alternating currentSection 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.30- Energy-!Level Diagrams for an N-Type anda P-Type Semiconductor°opyright © °engage !Learning. ²ll rights reserved77Section 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±P–N ¸unctionѴ² small number of electrons migrate from then-type region into the p-type regionѴThe migrations place a negative charge on the p-typeregion and a positive charge on the n-type regionѴ°ontact potential prevents further migrationѴ°ontact potential - °harge buildup
Background image
Section 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.31 (a)- °harge °arriers in the P-Type andN-Type RegionsSection 10.5±>CE@irFKMHbd_`b] >CE@`b]NPK 168UVX^`UVXGLNIbd_`b]: $)+RMNltwbd_ir\]_ ³ltbd__aUVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.31 (Fb) and (c)- Reverse and ´orward ³iasReverse bias´orward biasSection 10.6#(bd_^`RMNGLNImu^`>CE@ir 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Molecular SolidsѴ°haracterized by strong covalent bonding withinmolecules and weak bonding between moleculesѴ±ntermolecular forces depend on the nature of themoleculesѴMolecules that do not have a dipole moment possess!London dispersion forcesѴMolecules with dipole moments have greaterintermolecular forces when hydrogen bonding ispossible
Background image
Section 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±onic SolidsѴStable, high-melting substances held together bythe strong electrostatic forces that exist betweenoppositely charged ionsѴStructure of binary ionic solids can be explainedby closest packing of spheresѴSpheres are packed to:ѴMaximize electrostatic attractions among oppositely chargedionsѴMinimize repulsions among ions with like charges°opyright © °engage !Learning. ²ll rights reserved82Section 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Types of µoles in °losest Packed StructuresѴTrigonal holes - ´ormed by threespheres inthe same layerѴNever occupied in binary ioniccompoundsѴTetrahedral holesѴ´ormed when a sphere is located in the dimple ofthree spheres in an adjacent layerSection 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Types of µoles in °losest Packed Structures(°ontinued)ѴThere are twice as many tetrahedral holes as packedanions in a closest packedstructureѴOctahedral holesѴ´ormed between two sets of three spheres inadjoining layers of the closestpackedstructuresѴ°losest packed structures containthe samenumber of octahedral holes as packed spheres
Background image
Section 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.34 (a), (Fb), and (c)- Tetrahedral µolesThe location (red X) of atetrahedral holeOne of thetetrahedral holesSection 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.35- Octahedral µolesThe locations (gray X) of the octahedralholesRepresentation of the unit cell for solidNa°lSection 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.3 - Determining the Number of±ons in a Unit °ellѴDetermine the net number of Na+and °lions inthe sodium chloride unit cell
Background image
Section 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.3 - SolutionѴThe °lions are cubic closest packed and thusform a face-centered cubic unit cellѴThere is a °lion on each corner and one at thecenter of each face of the cubeѴThe net number of °lions present in a unit cell isSection 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.3 - Solution(°ontinued 1)ѴThe Na+ions occupy the octahedral holes locatedin the center of the cube and midway along eachedgeѴThe Na+ion in the center of the cube is containedentirely in the unit cell, whereas those on the edgesare shared by four unit cellsSection 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.3 - Solution(°ontinued 2)ѴSince the number of edges in a cube is 12, the netnumber of Na+ions present is:ѴWe have shown that the net number of ions in aunit cell is 4 Na+ions and 4 °lionsѴ²grees with the 1:1 stoichiometry of sodium chloride
Background image
Section 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±2TaFble 10.7- Types and Properties of Solids°opyright © °engage !Learning. ²ll rights reserved91Section 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.4 - Types of SolidsѴUsing the Table 10.7, classify each of the followingsubstances according to the type of solid it forms¶old°arbon dioxide!Lithium fluorideryptonSection 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.4 - SolutionSolid gold is an atomic solid with metallicpropertiesSolid carbon dioxide contains nonpolar carbondioxide molecules and is a molecular solidSolid lithium fluoride contains !Li+and ´ions andis a binary ionic solid
Background image
Section 10.7°bd_`b]UVXGLNI 168bd_^`UVXNPKjs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.4 - Solution(°ontinued)Solid krypton contains krypton atoms that caninteract only through !London dispersion forcesѴ±t is an atomic solid but has properties characteristic ofa molecular solid with nonpolar moleculesSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Vaporization (Evaporation)ѴMolecules of a liquid escape the liquid’s surface toform a gasѴ¶eat of vaporization (ǻ±vap): Energy required tovaporize 1 mole of a liquid at a pressure of 1 atmѴEndothermic in natureSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.36 (a) and (Fb)- ³ehavior of a !Liquid in a°losed °ontainer°opyright © °engage !Learning. ²ll rights reserved96
Background image
Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Vapor PressureѴ·quiliFbrium: The point at which no further netchange occurs in the amount of liquid or vaporѴRate of condensation equals rate of evaporationѴ±ondensation: Process by which gases become liquidsѴ·quiliFbrium vapor pressure: Pressure of vapor atequilibriumSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.37- Rates of °ondensation and Evaporation°opyright © °engage !Learning. ²ll rights reserved98Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Measurement of Vapor PressureѴVapor pressure can be measured using a simplebarometerѴWhen the system reaches equilibrium, the vaporpressure can be determined from the change in theheight of the mercury column77YHSSaU.$ 77HSW_aVSZLWULW‛ 77//Y JUa^X_`
Background image
Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.38- Measuring Vapor Pressure°opyright © °engage !Learning. ²ll rights reserved100Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°ritical ThinkingѴYou have seen that the water molecule has a bentshape and therefore is a polar moleculeѴThis accounts for many of water’s interestingpropertiesѴWhat if the water molecule was linear?Ѵµow would this affect the properties of water, such as itssurface tension, heat of vaporization, and vapor pressure?Ѵµow would life be different?Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Vapor Pressure and !LiquidsѴ!Liquids with high vapor pressures are volatileѴEvaporation occurs rapidly in an open environmentѴThe size of the intermolecular forces in a liquiddetermines its vapor pressureѴSubstances with large molar masses have relativelylow vapor pressures
Background image
Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Vapor Pressure and !Liquids(°ontinued)ѴVapor pressure increases significantly withtemperatureѴ² molecule must have sufficient kinetic energy toovercome intermolecular forcesSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Vapor Pressure versus TemperatureѴProduces a straight line when plotted on a graphѴ279- Temperature in KelvinѴΔµvap- Enthalpy of vaporizationѴ057- Universal gas constantѴ±- °onstant characteristic of a given liquidѴln - Natural logarithm of the vapor pressureSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Vapor Pressure versus Temperature(°ontinued)ѴEquation 10.4 is the equation for a straight line ofthe formy=_ax + FKMH
Background image
Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Example 10.5 - Determining Enthalpies of VaporizationѴUsing the plots in the figuredeterminewhether wateror diethyl ether has thelarger enthalpy ofvaporizationSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Example 10.5 - SolutionѴWhen ln(-24vap) is plotted versus 1/279, the slope ofthe resulting straight line isѴThe slopes of the lines for water and diethyl etherare both negative, as expected, and that the linefor ether has the smaller slopeѴEther has the smaller value ofΔµvapѴThis makes sense because the hydrogen bonding in watercauses it to have a relatively large enthalpy of vaporizationSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±The °lausius–°lapeyron EquationѴWhen the values ofΔµvapand-24vapat onetemperature are known, it is possible to calculatethe value of-24vapat another temperatureѴ²ssume that±does not depend on temperatureѴ²t temperatures2791and2792
Background image
Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±The °lausius–°lapeyron Equation(°ontinued)ѴRearranging the equation givesѴ-24vap= vapor pressureѴΔµvap= enthalpy of vaporizationѴ057= Universal gas constantѴ279= temperature (in Kelvin)°opyright © °engage !Learning. ²ll rights reserved109Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.6 - °alculating Vapor PressureѴThe vapor pressure of water at 25° is 23.8 torr,and the heat of vaporization of water at 25° is43.9 k¸/molѴ°alculate the vapor pressure of water at 50°Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.6 - SolutionѴWe will use the following equation:Ѵ´or water we haveѴ-24vap,2791= 23.8 torrѴ2791= 25 + 273 = 298 K2792= 50 + 273 = 323 KѴΔµvap= 43.9 k¸/mol = 43,900 ¸/molѴ057= 8.3145 ¸/ K· mol
Background image
Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±±nteractive Example 10.6 - Solution(°ontinued)ѴTaking the antilog of both sides givesSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±SublimationѴProcess in which solids change to gases withoutpassing through the liquid stateѴOccurs with dry ice and iodineSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°hanges of StateѴ¶eating curve: Plot of temperature versus timefor a process where energy is added at a constantrateѴWhen a solid is heated, it melts to form a liquidѴ±f the heating continues, it will eventually form the vaporphaseѴ¶eat of fusion (enthalpy of fusion): °hange inenthalpy at the melting point of a solid
Background image
Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.42- µeating °urve for a Specific Quantity ofWaterSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±2TaFble 10.9- Melting Points and Enthalpies of ´usion forSeveral Representative SolidsSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Melting PointѴThe temperature at whichthe solid and liquid haveidentical vapor pressures
Background image
Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 10.44- ±nteraction of Solid and !Liquid Water inthe Vapor StateSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Temperature and Vapor Pressure - °ase 1ѴTemperature at which the vapor pressure of thesolid is greater than that of the liquidѴThe solid releases vapor, attempting to achieveequilibriumѴThe liquid attempts to achieve equilibrium byabsorbing vaporѴNet effect - °onversion from solid to liquid through thevapor phaseѴTemperature would be above the melting point of iceSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Temperature and Vapor Pressure - °ase 2ѴTemperature at which vapor pressure of the solidis less than that of the liquidѴ!Liquid will disappear, and the amount of ice willincreaseѴSolid will achieve equilibrium with the vaporѴTemperature should be below the melting point of ice
Background image
Section 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Temperature and Vapor Pressure - °ase 3ѴTemperature at which the vapor pressures of thesolid and liquid are identicalѴ°oexist in the apparatus at equilibrium with the vaporѴ$ormal melting point: Temperature at which thevapor pressures of the solid and liquid states areidentical at 1 atmosphere of pressureѴRepresents the freezing point that enables existence of solidand liquid statesSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Temperature and Vapor Pressure - °ase 3(°ontinued 1)Ѵ$ormal Fboiling pointѴTemperature at which thevapor pressure of the liquid is1 atmosphereѴ°hanges of state do notalways occur at theboiling or melting pointSection 10.88=?>CE@ikfbd_ir -24irRMNjsjsmuirRMN >CE@`b]NPK ±TU>CE@`b]STRMNjs bd_RS 168lt>CE@ltRMN*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Temperature and Vapor Pressure - °ase 3(°ontinued 2)Ѵ1Supercooledwater remains in the liquid state below 0°° and 1 atm of pressureѴWater can besuperheatedif it is heated rapidlyѴVapor pressure in the liquid is greater than atmosphericpressureѴ³ubbles formed burst before reaching the surface, resultingin bumping
Background image
Section 10.9-24TU>CE@jsRMN ¶UVX>CE@STir>CE@_ajs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Phase DiagramѴ°onvenient method of representing the phases ofa substance as a function oftemperature andpressureѴPhase diagram of waterѴ279m- Normal melting pointѴ2793and-243- Triple pointѴ279b- Normal boiling pointѴ279c- °ritical temperatureѴ-24c- °ritical pressure°opyright © °engage !Learning. ²ll rights reserved124Section 10.9-24TU>CE@jsRMN ¶UVX>CE@STir>CE@_ajs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Phase Diagram(°ontinued)Ѵ2Triple point: Temperature at which all threephases exist simultaneouslyѴ±ritical point: Defined by critical pressure andtemperatureѴ±ritical pressure: Pressure required to produceliquefaction at the critical temperatureѴ±ritical temperature: The temperature above whichvapor cannot be liquefied, irrespective of thepressure applied°opyright © °engage !Learning. ²ll rights reserved125Section 10.9-24TU>CE@jsRMN ¶UVX>CE@STir>CE@_ajs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Phase Diagram for WaterѴDescribes a closed systemѴ²t point:?A<,ice is subjected toincreased pressure atconstant temperatureѴSolid/liquid line is crossed asthe pressure is increased
Background image
Section 10.9-24TU>CE@jsRMN ¶UVX>CE@STir>CE@_ajs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Phase Diagram for Water - ObservationsѴThe solid/liquid boundary line has a negativeslopeѴ²t the melting point, liquid and solid are indynamic equilibriumѴWhen pressure is applied, the volume is reducedѴ² given mass of ice has more volume at 0° than thesame mass of water in liquid stateѴ´reezing point of water is less than 0° when externalpressure is greater than 1 atmSection 10.9-24TU>CE@jsRMN ¶UVX>CE@STir>CE@_ajs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Phase Diagram for Water - ²pplicationsѴ±ce skatingѴNarrow blades of skates exert a large amount ofpressureѴ´rictional heat caused when skates moves over icecontributes to further melting of iceѴ²s the blades pass by, the liquid refreezesѴ!Low density of iceѴ°auses ice formed on rivers and lakes to float, and thishelps prevent water bodies from freezing in the winterSection 10.9-24TU>CE@jsRMN ¶UVX>CE@STir>CE@_ajs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±2TaFble 10.10- ³oiling Point of Water at Various !Locations
Background image
Section 10.9-24TU>CE@jsRMN ¶UVX>CE@STir>CE@_ajs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°ritical ThinkingѴ±ce is less dense than liquid water, as evidenced bythe fact that ice floats in a glass of waterѴWhat if ice was more dense than liquid water?Ѵµow would this affect the phase diagram for water?Section 10.9-24TU>CE@jsRMN ¶UVX>CE@STir>CE@_ajs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±°igure 9.49- Phase Diagram for °arbon DioxideѴThe liquid state does notexist at a pressure of 1atmѴSolid/liquid line has apositive slopeѴDensity of solid carbondioxide is greater thanthat of liquid carbondioxide°opyright © °engage !Learning. ²ll rights reserved131Section 10.9-24TU>CE@jsRMN ¶UVX>CE@STir>CE@_ajs*aS\U[YZW #!"( *LW`YHSYLW 33LWHSU`[`Y± (^^ 99D[YZWV 99DLWVLWUYLWKV±Phase Diagram for °arbon Dioxide - ²pplicationsѴ°arbon dioxide is used in fire extinguishersѴ!Liquid released from the extinguisher into theenvironment at 1 atm immediately changes to a vaporѴDry iceѴ² convenient refrigerant as it does not undergo theliquid phase under normal atmospheric conditions
Background image