M4 Assignment - Solutions

.pdf
School
Rutgers University**We aren't endorsed by this school
Course
ECE 656
Subject
Mathematics
Date
Dec 18, 2024
Pages
8
Uploaded by viiveek7
M4 Assignment - SolutionsMarcos NettoNew Jersey Institute of Technology, Newark, NJ 07103, United StatesOctober 8, 20241Letvdq0Tdq0vabc(1)idq0Tdq0iabc(2)λdq0Tdq0λabc(3)Also, letvabc=rsiabc+ddtλabc(4)Substituting (4) into (1):vdq0=Tdq0rsiabc+ddtλabc=rsTdq0iabc+Tdq0ddtλabc(5)Using (2) and (3) in (5):vdq0=rsidq0+Tdq0ddtT1dq0λdq0|{z}AEquation (3.16) in the textbook(6)Now, let us expand termAin (6):A=Tdq0ddtT1dq0|{z}a(t)λdq0|{z}b(t)Chain rule:ddta(t)b(t)=ddta(t)b(t) + a(t)ddtb(t)=Tdq0ddtT1dq0λdq0+Tdq0T1dq0|{z}=Identity matrixddtλdq0=Tdq0ddtT1dq0λdq0+ddtλdq0(7)Substituting (7) back into (6):vdq0=rsidq0+ddtλdq0+Tdq0ddtT1dq0λdq0|{z}B(8)Now, let us expand termBin (8):B=Tdq0ddtT1dq0λdq0=23sinP2θshaftsin(P2θshaft2π3)sin(P2θshaft+2π3)cosP2θshaftcos(P2θshaft2π3)cos(P2θshaft+2π3)121212dT1dq0shaftshaftdt!λdλqλ0(9)1
Background image
where we used the fact thatT1dq0is a function ofθshaft(t), henceddtT1dq0θshaft(t)=dT1dq0shaftshaftdt. From equation(3.24) in the textbook,shaftdt=2Pω. Also,dT1dq0shaftin (9) is given by:dT1dq0shaft=P2cosP2θshaftP2sinP2θshaft0P2cos(P2θshaft2π3)P2sin(P2θshaft2π3)0P2cos(P2θshaft+2π3)P2sin(P2θshaft+2π3)0(10)Replacing (10) andshaftdt=2Pωinto (9):B=Tdq0ddtT1dq0λdq0=23sinP2θshaftsin(P2θshaft2π3)sin(P2θshaft+2π3)cosP2θshaftcos(P2θshaft2π3)cos(P2θshaft+2π3)121212P2cosP2θshaftP2sinP2θshaft0P2cos(P2θshaft2π3)P2sin(P2θshaft2π3)0P2cos(P2θshaft+2π3)P2sin(P2θshaft+2π3)02Pωλdλqλ0=23sinP2θshaftsin(P2θshaft2π3)sin(P2θshaft+2π3)cosP2θshaftcos(P2θshaft2π3)cos(P2θshaft+2π3)121212cosP2θshaftsinP2θshaft0cos(P2θshaft2π3)sin(P2θshaft2π3)0cos(P2θshaft+2π3)sin(P2θshaft+2π3)0ωλdλqλ0=23ωsinP2θshaftsin(P2θshaft2π3)sin(P2θshaft+2π3)cosP2θshaftcos(P2θshaft2π3)cos(P2θshaft+2π3)121212cosP2θshaftsinP2θshaft0cos(P2θshaft2π3)sin(P2θshaft2π3)0cos(P2θshaft+2π3)sin(P2θshaft+2π3)0|{z}Cλdλqλ0(11)Now, we’ll expandCin (11), term by term. LetC=c11c12c13c21c22c23c31c32c33Then, we have:c11= sinP2θshaftcosP2θshaft+ sin(P2θshaft2π3)cos(P2θshaft2π3)+ sin(P2θshaft+2π3)cos(P2θshaft+2π3)c12=sinP2θshaftsinP2θshaftsin(P2θshaft2π3)sin(P2θshaft2π3)sin(P2θshaft+2π3)sin(P2θshaft+2π3)c13= 0c21= cosP2θshaftcosP2θshaft+ cos(P2θshaft2π3)cos(P2θshaft2π3)+ cos(P2θshaft+2π3)cos(P2θshaft+2π3)c22=sinP2θshaftcosP2θshaftsin(P2θshaft2π3)cos(P2θshaft2π3)sin(P2θshaft+2π3)cos(P2θshaft+2π3)c23= 0c31=12[cosP2θshaft+ cos(P2θshaft2π3)+ cos(P2θshaft+2π3)]c32=12[sinP2θshaft+ sin(P2θshaft2π3)+ sin(P2θshaft+2π3)]c33= 0Next, the following trigonometric identities will be used to simplify the elements ofC.sin (a±b) = sin (a) cos (b)±cos (a) sin (b)cos (a±b) = cos (a) cos (b)sin (a) sin (b)sin (2a) = 2 sin (a) cos (a)sin2(a) =1212cos (2a)cos2(a) =12+12cos (2a)2
Background image
Thus,c11=c22=12sinshaft+12sinshaft4π3+12sinshaft+4π3=12sinshaft+ sinshaft4π3+ sinshaft+4π3=12sinshaft+ sinshaftcos4π3cosshaftsin4π3+ sinshaftcos4π3+ cosshaftsin4π3=12sinshaft+ sinshaftcos4π3+ sinshaftcos4π3=12sinshaft12sinshaft+12sinshaft= 0.c12=12+12cosshaft12+12cosshaft4π312+12cosshaft+4π3=32+12cosshaft+ cosshaftcos4π3+ sinshaftsin4π3+ cosshaftcos4π3sinshaftsin4π3=32+12cosshaft+ cosshaftcos4π3+ cosshaftcos4π3=32+12cosshaft12cosshaft12cosshaft=32.c21=12+12cosshaft+12+12cosshaft4π3+12+12cosshaft+4π3=32+12cosshaft+ cosshaftcos4π3+ sinshaftsin4π3+ cosshaftcos4π3sinshaftsin4π3=32+12cosshaft+ cosshaftcos4π3+ cosshaftcos4π3=32+12cosshaft12cosshaft12cosshaft=32.c31=12cosP2θshaft+ cosP2θshaftcos2π3+ sinP2θshaftsin2π3+ cosP2θshaftcos2π3sinP2θshaftsin2π3=12cosP2θshaft+ cosP2θshaftcos2π3+ cosP2θshaftcos2π3=12cosP2θshaft12cosP2θshaft12cosP2θshaft= 0.c32=12sinP2θshaft+ sinP2θshaftcos2π3cosP2θshaftsin2π3+ sinP2θshaftcos2π3+ cosP2θshaftsin2π3=12sinP2θshaft+ sinP2θshaftcos2π3+ sinP2θshaftcos2π3=12sinP2θshaft12sinP2θshaft12sinP2θshaft= 03
Background image
Finally,C=03203200000(12)Substituting (12) into (11):B=23ω03203200000λdλqλ0=ω010100000λdλqλ0(13)Substituting (13) into (8):vdq0=rsidq0+ddtλdq0+ω010100000λdλqλ0(14)In matrix form,vdvqv0=rsidiqi0+ddtλdλqλ0+0ω0ω00000λdλqλ0=rsidiqi0+ωλqωλd0+ddtλdλqλ0(15)or as separate equations,vd=rsidωλq+ddtλd(16)vd=rsiq+ωλd+ddtλq(17)v0=rsi0+ddtλ0(18)4
Background image
2For simplicity, denoteP2θshaft=xcosP2θshaft= cosxsinP2θshaft= sinxcosP2θshaft2π3= cosxsinP2θshaft2π3= sinxcosP2θshaft+2π3= cosx+sinP2θshaft+2π3= sinx+Then,Pdq0=r23cosxcosxcosx+sinxsinxsinx+121212andPdq0=r23cosxsinx12cosxsinx12cosx+sinx+12wherePdq0denotes the transpose ofPdq0. To show thatPdq0=P1dq0, that is, the transpose ofPdq0equals itsinverse, it suffces to show thatPdq0Pdq0=I, whereIdenotes an Identity matrix. So,Pdq0Pdq0=23cosxcosxcosx+sinxsinxsinx+121212cosxsinx12cosxsinx12cosx+sinx+12(19)=23abcdefhij(20)5
Background image
a = cos2x+ cos2x+ cos2x+=12+12cosx+12+12cosx+12+12cosx+=32+12(cosx+ cosx+ cosx+)=32(since the summation of three sine/cosine functions 120 degrees apart is 0)(21).b = d = cosxsinx+ cosxsinx+ cosx+sinx+=12sin 2x+12sin 2x+12sin 2x+=12(sin 2x+ sin 2x+ sin 2x+)= 0(22).c = h =12cosx+12cosx+12cosx+=12(cosx+ cosx+ cosx+)= 0(23).e = sin2x+ sin2x+ sin2x+=1212cosx+1212cosx+1212cosx+=3212(cosx+ cosx+ cosx+)=32(24).f = i =12sinx+12sinx+12sinx+=12(sinx+ sinx+ sinx+)= 0(25).j =12+12+12=32(26)Substituting (21)–(26) into (2),Pdq0Pdq0=23320003200032=100010001(27)6
Background image
3vdvqv0=Pdq0vavbvc=r23cos(P2θshaft)cos(P2θshaft2π3)cos(P2θshaft+2π3)sin(P2θshaft)sin(P2θshaft2π3)sin(P2θshaft+2π3)1212122Vcos (ωst+θ)2Vcos(ωst+θ2π3)2Vcos(ωst+θ+2π3)=232Vcos(P2θshaft)cos(P2θshaft2π3)cos(P2θshaft+2π3)sin(P2θshaft)sin(P2θshaft2π3)sin(P2θshaft+2π3)121212cos (ωst+θ)cos(ωst+θ2π3)cos(ωst+θ+2π3)=232Vcosxcos(x2π3)cos(x+2π3)sinxsin(x2π3)sin(x+2π3)121212cosycos(y2π3)cos(y+2π3)=23Vabc(28)where we denotex=P2θshaftandy=ωst+θfor simplicity. Now,a = cosxcosy+ cosx2π3cosy2π3+ cosx+2π3cosy+2π3=12cos (xy) +12cos (x+y) +12cos (xy) +12cosx+y4π3+12cos (xy) +12cosx+y+4π3=32cos (xy) +12cos (x+y) + cosx+y4π3+ cosx+y+4π3=32cos (xy)=32cosP2θshaftωstθ(29).b = sinxcosy+ sinx2π3cosy2π3+ sinx+2π3cosy+2π3=12sin (xy) +12sin (x+y) +12sin (xy) +12sinx+y4π3+12sin (xy) +12sinx+y+4π3=32sin (xy) +12sin (x+y) + sinx+y4π3+ sinx+y+4π3=32sin (xy)=32sinP2θshaftωstθ(30).c =12cosy+ cosy2π3+ cosy+2π3= 0(31)where we used the fact that the summation of three sine/cosine functions 120 degrees apart is 0, along with thefollowing trigonometric identities:cosicosj=12cos(ij) +12cos(i+j)sinicosj=12sin(ij) +12sin(i+j)7
Background image
Substituting (29)–(31) into (28):vdvqv0=23V32cos(P2θshaftωstθ)32sin(P2θshaftωstθ)0=3Vcos(P2θshaftωstθ)sin(P2θshaftωstθ)0(32)Now, define:ˆδP2θshaftωstπ2(33)From (33)P2θshaftωst=ˆδ+π2(34)Substituting (34) into (32) yieldsvdvqv0=3Vcosˆδ+π2θsinˆδ+π2θ0=3Vsinˆδθcosˆδθ0=3Vsinθˆδcosθˆδ0(35)where we used the following trigonometric identitiescosα+π2=sin (α)sinα+π2= cos (α)sin (αβ) =sin (βα)cos (αβ) = cos (βα)Finally,vq+jvd=3V ej(θˆδ)(36)and, therefore,¯V=13(vq+jvd)ejˆδ(37)8
Background image