Harvard University**We aren't endorsed by this school
Course
RELEASE 18
Subject
Electrical Engineering
Date
Jan 9, 2025
Pages
186
Uploaded by SargentSealPerson1239
3GPP TS 38.211 V18.4.0(2024-09)Technical Specification3rd Generation Partnership Project;Technical Specification Group Radio Access Network;NR;Physical channels and modulation(Release 18)The present document has been developed within the 3rd Generation Partnership Project (3GPPTM) and may be further elaborated for the purposes of 3GPP..The present document has not been subject to any approval process by the 3GPPOrganizational Partners and shall not be implemented.This Specification is provided for future development work within 3GPPonly. The Organizational Partners accept no liability for any use of this Specification.Specifications and Reports for implementation of the 3GPPTMsystem should be obtained via the 3GPP Organizational Partners' Publications Offices.
3GPP5.2.3.1Sequences of length 30 or larger............................................................................................................225.2.3.2Sequences of length less than 30............................................................................................................225.3OFDM baseband signal generation...................................................................................................................265.3.1OFDM baseband signal generation for all channels except PRACH and RIM-RS.....................................265.3.2OFDM baseband signal generation for PRACH..........................................................................................285.3.3OFDM baseband signal generation for RIM-RS.........................................................................................305.4Modulation and upconversion...........................................................................................................................306Uplink.....................................................................................................................................................316.1Overview...........................................................................................................................................................316.1.1Overview of physical channels....................................................................................................................316.1.2Overview of physical signals.......................................................................................................................316.2Physical resources..............................................................................................................................................316.3Physical channels...............................................................................................................................................326.3.1Physical uplink shared channel....................................................................................................................326.3.1.1Scrambling.............................................................................................................................................326.3.1.2Modulation.............................................................................................................................................336.3.1.3Layer mapping........................................................................................................................................336.3.1.4Transform precoding..............................................................................................................................336.3.1.5Precoding................................................................................................................................................346.3.1.6Mapping to virtual resource blocks........................................................................................................596.3.1.7Mapping from virtual to physical resource blocks.................................................................................606.3.2Physical uplink control channel...................................................................................................................606.3.2.1General...................................................................................................................................................606.3.2.2Sequence and cyclic shift hopping.........................................................................................................606.3.2.2.1Group and sequence hopping............................................................................................................606.3.2.2.2Cyclic shift hopping..........................................................................................................................616.3.2.3PUCCH format 0....................................................................................................................................626.3.2.3.1Sequence generation.........................................................................................................................626.3.2.3.2Mapping to physical resources.........................................................................................................626.3.2.4PUCCH format 1....................................................................................................................................626.3.2.4.1Sequence modulation........................................................................................................................626.3.2.4.2Mapping to physical resources.........................................................................................................636.3.2.5PUCCH format 2....................................................................................................................................646.3.2.5.1Scrambling........................................................................................................................................646.3.2.5.2Modulation........................................................................................................................................646.3.2.5.2ASpreading..........................................................................................................................................646.3.2.5.3Mapping to physical resources.........................................................................................................656.3.2.6PUCCH formats 3 and 4.........................................................................................................................656.3.2.6.1Scrambling........................................................................................................................................656.3.2.6.2Modulation........................................................................................................................................666.3.2.6.3Block-wise spreading........................................................................................................................666.3.2.6.4Transform precoding........................................................................................................................676.3.2.6.5Mapping to physical resources.........................................................................................................676.3.3Physical random-access channel..................................................................................................................676.3.3.1Sequence generation...............................................................................................................................676.3.3.2Mapping to physical resources...............................................................................................................746.4Physical signals..................................................................................................................................................946.4.1Reference signals.........................................................................................................................................946.4.1.1Demodulation reference signal for PUSCH...........................................................................................946.4.1.1.1Sequence generation.........................................................................................................................946.4.1.1.2(void)................................................................................................................................................966.4.1.1.3Precoding and mapping to physical resources..................................................................................966.4.1.2Phase-tracking reference signals for PUSCH.......................................................................................1016.4.1.2.1Sequence generation.......................................................................................................................1016.4.1.2.1.1Sequence generation if transform precoding is not enabled.....................................................1016.4.1.2.1.2Sequence generation if transform precoding is enabled...........................................................1016.4.1.2.2Mapping to physical resources.......................................................................................................1026.4.1.2.2.1Precoding and mapping to physical resources if transform precoding is not enabled..............1026.4.1.2.2.2Mapping to physical resources if transform precoding is enabled............................................1046.4.1.3Demodulation reference signal for PUCCH.........................................................................................1056.4.1.3.1Demodulation reference signal for PUCCH format 1....................................................................1053GPP TS 38.211 V18.4.0 (2024-09)4(Release 18)
3GPP6.4.1.3.1.1Sequence generation.................................................................................................................1056.4.1.3.1.2Mapping to physical resources..................................................................................................1066.4.1.3.2Demodulation reference signal for PUCCH format 2....................................................................1066.4.1.3.2.1Sequence generation.................................................................................................................1066.4.1.3.2.2Mapping to physical resources..................................................................................................1076.4.1.3.3Demodulation reference signal for PUCCH formats 3 and 4.........................................................1076.4.1.3.3.1Sequence generation.................................................................................................................1076.4.1.3.3.2Mapping to physical resources..................................................................................................1076.4.1.4Sounding reference signal....................................................................................................................1086.4.1.4.1SRS resource...................................................................................................................................1086.4.1.4.2Sequence generation.......................................................................................................................1086.4.1.4.3Mapping to physical resources.......................................................................................................1106.4.1.4.4Sounding reference signal slot configuration.................................................................................1167Downlink..............................................................................................................................................1167.1Overview.........................................................................................................................................................1167.1.1Overview of physical channels..................................................................................................................1167.1.2Overview of physical signals.....................................................................................................................1177.2Physical resources............................................................................................................................................1177.3Physical channels.............................................................................................................................................1177.3.1Physical downlink shared channel.............................................................................................................1177.3.1.1Scrambling...........................................................................................................................................1177.3.1.2Modulation...........................................................................................................................................1187.3.1.3Layer mapping......................................................................................................................................1197.3.1.4Antenna port mapping..........................................................................................................................1207.3.1.5Mapping to virtual resource blocks......................................................................................................1207.3.1.6Mapping from virtual to physical resource blocks...............................................................................1207.3.2Physical downlink control channel (PDCCH)...........................................................................................1227.3.2.1Control-channel element (CCE)...........................................................................................................1227.3.2.2Control-resource set (CORESET)........................................................................................................1227.3.2.3Scrambling...........................................................................................................................................1247.3.2.4PDCCH modulation.............................................................................................................................1247.3.2.5Mapping to physical resources.............................................................................................................1247.3.3Physical broadcast channel........................................................................................................................1257.3.3.1Scrambling...........................................................................................................................................1257.3.3.2Modulation...........................................................................................................................................1257.3.3.3Mapping to physical resources.............................................................................................................1257.4Physical signals................................................................................................................................................1257.4.1Reference signals.......................................................................................................................................1257.4.1.1Demodulation reference signals for PDSCH........................................................................................1257.4.1.1.1Sequence generation.......................................................................................................................1257.4.1.1.2Mapping to physical resources.......................................................................................................1267.4.1.2Phase-tracking reference signals for PDSCH.......................................................................................1307.4.1.2.1Sequence generation.......................................................................................................................1307.4.1.2.2Mapping to physical resources.......................................................................................................1307.4.1.3Demodulation reference signals for PDCCH.......................................................................................1327.4.1.3.1Sequence generation.......................................................................................................................1327.4.1.3.2Mapping to physical resources.......................................................................................................1327.4.1.4Demodulation reference signals for PBCH..........................................................................................1337.4.1.4.1Sequence generation.......................................................................................................................1337.4.1.4.2Mapping to physical resources.......................................................................................................1337.4.1.5CSI reference signals............................................................................................................................1337.4.1.5.1General............................................................................................................................................1337.4.1.5.2Sequence generation.......................................................................................................................1347.4.1.5.3Mapping to physical resources.......................................................................................................1347.4.1.6RIM reference signals..........................................................................................................................1377.4.1.6.1General............................................................................................................................................1377.4.1.6.2Sequence generation.......................................................................................................................1377.4.1.6.3Mapping to physical resources.......................................................................................................1387.4.1.6.4RIM-RS configuration....................................................................................................................1387.4.1.6.4.1General......................................................................................................................................1383GPP TS 38.211 V18.4.0 (2024-09)5(Release 18)
3GPP7.4.1.6.4.2Time-domain parameters and mapping from itto time-domain parameters...........................1387.4.1.6.4.3Frequency-domain parameters and mapping from ifto frequency-domain parameters.........1397.4.1.6.4.4Sequence parameters and mapping from isto sequence parameters.......................................1407.4.1.6.4.5Mapping between resource triplet and set ID...........................................................................1407.4.1.7Positioning reference signals................................................................................................................1417.4.1.7.1General............................................................................................................................................1417.4.1.7.2Sequence generation.......................................................................................................................1417.4.1.7.3Mapping to physical resources in a downlink PRS resource..........................................................1417.4.1.7.4Mapping to slots in a downlink PRS resource set..........................................................................1427.4.2Synchronization signals.............................................................................................................................1437.4.2.1Physical-layer cell identities.................................................................................................................1437.4.2.2Primary synchronization signal............................................................................................................1437.4.2.2.1Sequence generation.......................................................................................................................1437.4.2.2.2Mapping to physical resources.......................................................................................................1437.4.2.3Secondary synchronization signal........................................................................................................1437.4.2.3.1Sequence generation.......................................................................................................................1437.4.2.3.2Mapping to physical resources.......................................................................................................1437.4.3SS/PBCH block..........................................................................................................................................1447.4.3.1Time-frequency structure of an SS/PBCH block.................................................................................1447.4.3.1.1Mapping of PSS within an SS/PBCH block...................................................................................1457.4.3.1.2Mapping of SSS within an SS/PBCH block...................................................................................1457.4.3.1.3Mapping of PBCH and DM-RS within an SS/PBCH block...........................................................1457.4.3.2Time location of an SS/PBCH block....................................................................................................1458Sidelink.................................................................................................................................................1468.1Overview.........................................................................................................................................................1468.1.1Overview of physical channels..................................................................................................................1468.1.2Overview of physical signals.....................................................................................................................1468.2Physical resources............................................................................................................................................1468.2.1General.......................................................................................................................................................1468.2.2Numerologies.............................................................................................................................................1468.2.3Frame structure..........................................................................................................................................1478.2.3.1Frames and subframes..........................................................................................................................1478.2.3.2Slots......................................................................................................................................................1478.2.4Antenna ports.............................................................................................................................................1478.2.5Resource grid.............................................................................................................................................1478.2.6Resource elements......................................................................................................................................1488.2.7Resource blocks.........................................................................................................................................1488.2.8Bandwidth part...........................................................................................................................................1488.3Physical channels.............................................................................................................................................1488.3.1Physical sidelink shared channel................................................................................................................1488.3.1.1Scrambling...........................................................................................................................................1488.3.1.2Modulation...........................................................................................................................................1498.3.1.3Layer mapping......................................................................................................................................1498.3.1.4Precoding..............................................................................................................................................1498.3.1.5Mapping to virtual resource blocks......................................................................................................1498.3.1.6Mapping from virtual to physical resource blocks...............................................................................1508.3.2Physical sidelink control channel...............................................................................................................1508.3.2.1Scrambling...........................................................................................................................................1508.3.2.2Modulation...........................................................................................................................................1508.3.2.3Mapping to physical resources.............................................................................................................1508.3.3Physical sidelink broadcast channel...........................................................................................................1508.3.3.1Scrambling...........................................................................................................................................1508.3.3.2Modulation...........................................................................................................................................1518.3.3.3Mapping to physical resources.............................................................................................................1518.3.4Physical sidelink feedback channel............................................................................................................1518.3.4.1General.................................................................................................................................................1518.3.4.2PSFCH format 0...................................................................................................................................1518.3.4.2.1Sequence generation.......................................................................................................................1518.3.4.2.2Mapping to physical resources.......................................................................................................1518.4Physical signals................................................................................................................................................1523GPP TS 38.211 V18.4.0 (2024-09)6(Release 18)
3GPP8.4.1Reference signals.......................................................................................................................................1528.4.1.1Demodulation reference signals for PSSCH........................................................................................1528.4.1.1.1Sequence generation.......................................................................................................................1528.4.1.1.2Mapping to physical resources.......................................................................................................1528.4.1.2Phase-tracking reference signals for PSSCH.......................................................................................1538.4.1.2.1Sequence generation.......................................................................................................................1538.4.1.2.2Mapping to physical resources.......................................................................................................1538.4.1.3Demodulation reference signals for PSCCH........................................................................................1548.4.1.3.1Sequence generation.......................................................................................................................1548.4.1.3.2Mapping to physical resources.......................................................................................................1558.4.1.4Demodulation reference signals for PSBCH........................................................................................1558.4.1.4.1Sequence generation.......................................................................................................................1558.4.1.4.2Mapping to physical resources.......................................................................................................1558.4.1.5CSI reference signals............................................................................................................................1568.4.1.5.1General............................................................................................................................................1568.4.1.5.2Sequence generation.......................................................................................................................1568.4.1.5.3Mapping to physical resources.......................................................................................................1568.4.1.6Positioning reference signals................................................................................................................1568.4.1.6.1General............................................................................................................................................1568.4.1.6.2Sequence generation.......................................................................................................................1568.4.1.6.3Mapping to physical resources.......................................................................................................1578.4.2Synchronization signals.............................................................................................................................1588.4.2.1Physical-layer sidelink synchronization identities...............................................................................1588.4.2.2Sidelink primary synchronization signal..............................................................................................1588.4.2.2.1Sequence generation.......................................................................................................................1588.4.2.2.2Mapping to physical resources.......................................................................................................1588.4.2.3Sidelink secondary synchronization signal..........................................................................................1588.4.2.3.1Sequence generation.......................................................................................................................1588.4.2.3.2Mapping to physical resources.......................................................................................................1588.4.3S-SS/PSBCH block....................................................................................................................................1598.4.3.1Time-frequency structure of an S-SS/PSBCH block...........................................................................1598.4.3.1.1Mapping of S-PSS within an S-SS/PSBCH block..........................................................................1598.4.3.1.2Mapping of S-SSS within an S-SS/PSBCH block..........................................................................1598.4.3.1.3Mapping of PSBCH and DM-RS within an S-SS/PSBCH block...................................................1598.4.3.2Time location of an S-SS/PSBCH block..............................................................................................1608.5Timing.............................................................................................................................................................160Annex A (informative):Change history..............................................................................................1613GPP TS 38.211 V18.4.0 (2024-09)7(Release 18)
3GPPForewordThis Technical Specification has been produced by the 3rdGeneration Partnership Project (3GPP).The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:Version x.y.zwhere:xthe first digit:1presented to TSG for information;2presented to TSG for approval;3or greater indicates TSG approved document under change control.ythe second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.zthe third digit is incremented when editorial only changes have been incorporated in the document.3GPP TS 38.211 V18.4.0 (2024-09)8(Release 18)
3GPP1ScopeThe present document describes the physical channels and signals for 5G-NR.2ReferencesThe following documents contain provisions which, through reference in this text, constitute provisions of the present document.[1]3GPP TR 21.905: "Vocabulary for 3GPP Specifications".[2]3GPP TS 38.201: "NR; Physical Layer – General Description"[3]3GPP TS 38.202: "NR; Services provided by the physical layer"[4]3GPP TS 38.212: "NR; Multiplexing and channel coding"[5]3GPP TS 38.213: "NR; Physical layer procedures for control "[6]3GPP TS 38.214: "NR; Physical layer procedures for data "[7]3GPP TS 38.215: "NR; Physical layer measurements"[8]3GPP TS 38.104: "NR; Base Station (BS) radio transmission and reception"[9]void[10]3GPP TS 38.306: "NR; User Equipment (UE) radio access capabilities"[11]3GPP TS 38.321: "NR; Medium Access Control (MAC) protocol specification"[12]3GPP TS 38.133: "NR; Requirements for support of radio resource management"[13]3GPP TS 38.304: "NR; User Equipment (UE) procedures in Idle mode and RRC Inactive state"[14]3GPP TS 38.101-1: "NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone"[15]3GPP TS 38.101-2: "NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone"[16]3GPP TS 38.101-5: "NR; User Equipment (UE) radio transmission and reception; Part 5: Satellite access Radio Frequency (RF) and performance requirements"3Definitions of terms, symbols and abbreviations3.1TermsFor the purposes of the present document, the following definitions apply:3.2SymbolsFor the purposes of the present document, the following symbols apply:(k ,l)p, μResource element with frequency-domain index kand time-domain index lfor antenna port pand subcarrier spacing configuration μ; see clause 4.4.33GPP TS 38.211 V18.4.0 (2024-09)9(Release 18)
3GPPak ,l(p , μ)Value of resource element (k ,l)for antenna portpand subcarrier spacing configuration μ; see clause 4.4.3Amplitude scaling for a physical channel/signalc(n)PN sequence; see clause 5.2.1Subcarrier spacingΔfRASubcarrier spacing for random-access preamblesκThe ratio between Tsand ; see clause 4.1Subcarrier index relative to a referenceOFDM symbol index relative to a referenceμSubcarrier spacing configuration, Δ f=2μ∙15[kHz]Mbit\(q\)Number of coded bits to transmit on a physical channel [for codeword q]Msymb\(q\)Number of modulation symbols to transmit on a physical channel [for codeword q]MsymblayerNumber of modulation symbols to transmit per layer for a physical channelMscPUSCHScheduled bandwidth for uplink transmission, expressed as a number of subcarriers MRBPUSCHScheduled bandwidth for uplink transmission, expressed as a number of resource blocksMsymbapNumber of modulation symbols to transmit per antenna port for a physical channelυNumber of transmission layersNBWP,isizeSize of bandwidth part i; see clause 4.4.4.4NBWP,istartStart of bandwidth part i; see clause 4.4.4.4NCP,lμCyclic prefix length; see clause 5.3.1Ngrid,xsize,μThe size of the resource grid; see clauses 4.4.2 and 5.3Ngrid,xstart,μThe start of the resource grid; see clause 4.4.2NgroupPT-RSThe number of PT-RS groups; see clause 6.3.1.4NIDcellPhysical layer cell identity; see clause 7.4.2.1NIDSLPhysical-layer sidelink identity; see clause 8.4.2.1NRBCORESETFrequency-domain size of a control resource set; see clause 7.3.2.2NREGCORESETNumber of resource-element groups in a CORESET; see clause 7.3.2.2NsampgroupNumber of samples per PT-RS group; see clause 6.3.1.4NscRBNumber of subcarriers per resource block, see clause 4.4.4.1Nslotsubframe,μNumber of slots per subframe for subcarrier spacing configuration μ, see clause 4.3.2Nslotframe,μNumber of slots per frame for subcarrier spacing configuration μ, see clause 4.3.2NsymbCORESETTime duration of a control resource set; see clause 7.3.2.2NsymbPUCCHLength of the PUCCH transmission in OFDM symbols; see clause 6.3.2.1Nsymbsubframe,μNumber of OFDM symbols per subframe for subcarrier spacing configuration μ; see clause 4.3.1NsymbslotNumber of symbols per slotNTATiming advance between downlink and uplink; see clause 4.3.1NTA,offsetA fixed offset used to calculate the timing advance; see clause 4.3.1NTA,adjcommonNetwork-controlled timing correction; see clause 4.3.1NTA,adjUEUE-derived timing correction; see clause 4.3.1NRx-TxMinimum time from reception to transmission for a half-duplex UE; see clause 4.3.2nfSystem frame number (SFN)nCRBμCommon resource block number for subcarrier spacing configuration μ, see clause 4.4.4.33GPP TS 38.211 V18.4.0 (2024-09)10(Release 18)
3GPPnHFNHyper-frame numbernPRBPhysical resource block number; see clause 4.4.4.4nRNTIRadio network temporary identifiernsμSlot number within a subframe for subcarrier spacing configuration μ; see clause 4.3.2ns,fμSlot number within a frame for subcarrier spacing configuration μ; see clause 4.3.2pAntenna port numberModulation orderNumber of antenna portsru,v(n)Low-PAPR base sequence; see clause 5.2.2ru,v(α ,δ)(n)Low-PAPR sequence; see clause 5.2.2sl(p, μ)(t)The time-continuous signal on antenna port pand subcarrier spacing configuration μfor OFDM symbol lin a subframe; see clause 5.3.1Basic time unit for NR; see clause 4.1TfRadio frame duration; see clause 4.3.1TsBasic time unit for LTESubframe duration; see clause 4.3.1TslotSlot duration; see clause 4.3.2Timing advance between downlink and uplink; see clause 4.3.1WPrecoding matrix for spatial multiplexing3.3AbbreviationsFor the purposes of the present document, the following abbreviations apply:BWPBandwidth PartCCEControl Channel ElementCORESETControl Resource SetCRBCommon Resource BlockCSIChannel-State InformationCSI-RSCSI Reference Signal DCIDownlink Control InformationDM-RSDemodulation Reference SignalFR1Frequency Range 1 as defined in TS 38.104 [8]FR2Frequency Range 2 as defined in TS 38.104 [8]FR2-NTNFrequency Range 2 for Non-terrestrial networks as defined in TS 38.101-5 [16]IABIntegrated Access and BackhaulIAB-MTIAB Mobile Termination IEInformation ElementNCRNetwork-Controlled repeaterNCR-MTNCR Mobile TerminationPBCHPhysical Broadcast ChannelPDCCHPhysical Downlink Control ChannelPDSCHPhysical Downlink Shared ChannelPRACHPhysical Random-Access Channel PRBPhysical Resource BlockPSSPrimary Synchronization SignalPT-RSPhase-tracking reference signalPUCCHPhysical Uplink Control ChannelPUSCHPhysical Uplink Shared ChannelRARRandom Access ResponseREGResource-Element GroupRIMRemote Interference ManagementRIM-RSRemote Interference Management Reference Signal3GPP TS 38.211 V18.4.0 (2024-09)11(Release 18)
3GPPSRSSounding Reference SignalSSSSecondary Synchronization SignalVRBVirtual Resource Block4Frame structure and physical resources4.1GeneralThroughout this specification, unless otherwise noted, the size of various fields in the time domain is expressed in time units Tc=1/(Δfmax⋅Nf)where Δ fmax=480∙103Hz and Nf=4096. The constant κ=Ts/Tc=64where Ts=1/(Δfref⋅Nf,ref), Δfref=15⋅103Hzand Nf,ref=2048.Throughout this specification, unless otherwise noted, statements using the term "UE" in clauses 4, 5, 6, or 7 are equally applicable to the IAB-MT part of an IAB-node and the NCR-MT part of an NCR node. 4.2NumerologiesMultiple OFDM numerologies aresupported as given by Table 4.2-1 where μand the cyclic prefix for a downlink or uplink bandwidth part are obtained from the higher-layer parameters subcarrierSpacingand cyclicPrefix, respectively. Table 4.2-1: Supported transmission numerologies.μΔf=2μ⋅15[kHz]Cyclic prefix015Normal130Normal260Normal, Extended3120Normal4240Normal5480Normal6960Normal4.3Frame structure4.3.1Frames and subframesDownlink, uplink, and sidelink transmissions are organized into frames with Tf=(ΔfmaxNf/100)⋅Tc=10 msduration, each consisting of ten subframes of Tsf=(ΔfmaxNf/1000)⋅Tc=1 msduration. The number of consecutive OFDM symbols per subframe is Nsymbsubframe, μ=NsymbslotNslotsubframe, μ. Each frame is divided into two equally-sized half-frames of five subframes each with half-frame 0 consisting of subframes 0 – 4 and half-frame 1 consisting of subframes 5 – 9.There is one set of frames in the uplink and one set of frames in the downlink on a carrier. Uplink frame number ifor transmission from the UE shall start TTA=(NTA+NTA,offset+NTA,adjcommon+NTA,adjUE)Tcbefore the start of the corresponding downlink frame at the UE where- NTAand NTA,offsetare given by clause 4.2 of [5, TS 38.213], except for msgA transmission on PUSCH where NTA=0shall be used;-NTA,adjcommongiven by clause 4.2 of [5, TS 38.213] is derived from the higher-layer parameters ta-Common, ta-CommonDrift, and ta-CommonDriftVariantif configured, otherwise NTA,adjcommon=0;3GPP TS 38.211 V18.4.0 (2024-09)12(Release 18)
3GPP-NTA,adjUEgiven by clause 4.2 of [5, TS 38.213] is computed by the UE based on UE position and serving-satellite-ephemeris-related higher-layers parameters if configured, otherwise NTA,adjUE=0.Figure 4.3.1-1: Uplink-downlink timing relation.4.3.2SlotsFor subcarrier spacing configuration μ, slots are numbered nsμ∈{0,…, Nslotsubframe, μ−1}in increasing order within a subframe and ns,fμ∈{0,…, Nslotframe, μ−1}in increasing order within a frame. There are Nsymbslotconsecutive OFDM symbols in a slot where Nsymbslotdepends on the cyclic prefix as given by Tables 4.3.2-1 and 4.3.2-2. The start of slot nsμin a subframe is aligned in time with the start of OFDM symbol nsμNsymbslotin the same subframe.OFDM symbols in a slot in a downlink or uplink frame can be classified as 'downlink', 'flexible', or 'uplink'. Signaling of slot formats is described in clause 11.1 of [5, TS 38.213]. In a slot in a downlink frame, the UE shall assume that downlink transmissions only occur in 'downlink' or 'flexible' symbols.In a slot in an uplink frame, the UE shall only transmit in 'uplink' or 'flexible' symbols.A UE not capable of full-duplex communication and not supporting simultaneous transmission and reception as defined by parameter simultaneousRxTxInterBandENDC, simultaneousRxTxInterBandCA or simultaneousRxTxSUL[10, TS 38.306] among all cells within a group of cells is not expected to transmit in the uplink in one cell within the group of cells earlier than NRx-TxTcafter the end of the last received downlink symbol in the same or different cell within the group of cells where NRx-Txis given by Table 4.3.2-3. A UE not capable of full-duplex communication and not supporting simultaneous transmission and reception as defined by parameter simultaneousRxTxInterBandENDC, simultaneousRxTxInterBandCAor simultaneousRxTxSUL[10, TS 38.306] among all cells within a group of cells is not expected to receive in the downlink in one cell within the group of cells earlier than NTx-RxTcafter the end of the last transmitted uplink symbol in the same or different cell within the group of cells where NTx-Rxis given by Table 4.3.2-3. For DAPS handover operation, a UE not capable of full-duplex communication is not expected to transmit in the uplink to a cell earlier than NRx-TxTcafter the end of the last received downlink symbol in the different cell where NRx-Txis given by Table 4.3.2-3. For DAPS handover operation, a UE not capable of full-duplex communication is not expected to receive in the downlink from a cell earlier than NTx-RxTcafter the end of the last transmitted uplink symbol in the different cell where NTx-Rxis given by Table 4.3.2-3.A UE not capable of full-duplex communication is not expected to transmit in the uplink earlier than NRx-TxTcafter the end of the last received downlink symbol in the same cell where NRx-Txis given by Table 4.3.2-3. 3GPP TS 38.211 V18.4.0 (2024-09)13(Release 18)
3GPPA UE not capable of full-duplex communication is not expected to receive in the downlink earlier than NTx-RxTcafter the end of the last transmitted uplink symbol in the same cell where NTx-Rxis given by Table 4.3.2-3.Table 4.3.2-1: Number of OFDM symbols per slot, slots per frame, and slots per subframe for normal cyclic prefix.μNsymbslotNslotframe, μNslotsubframe, μ014101114202214404314808414160165143203261464064Table 4.3.2-2: Number of OFDM symbols per slot, slots per frame, and slots per subframe for extended cyclic prefix.μNsymbslotNslotframe, μNslotsubframe, μ212404Table 4.3.2-3: Transition time NRx-Txand NTx-RxTransition timeFR1FR2NTx-Rx2560013792NRx-Tx25600137924.4Physical resources4.4.1Antenna portsAn antenna port is defined such that the channel over which a symbol on the antenna port is conveyed can be inferred from the channel over which another symbol on the same antenna port is conveyed. Two antenna ports are said to be quasi co-located if the large-scale properties of the channel over which a symbol on one antenna port is conveyed can be inferred from the channel over which a symbol on the other antenna port is conveyed. The large-scale properties include one or more of delay spread, Doppler spread, Doppler shift, average gain, average delay, and spatial Rx parameters. 4.4.2Resource gridFor each numerology and carrier, a resource grid of Ngrid,xsize,μNscRBsubcarriers and Nsymbsubframe, μOFDM symbols is defined, starting at common resource block Ngridstart, μindicated by higher-layer signalling. There is one set of resource grids per transmission direction (uplink, downlink, or sidelink) with the subscriptxset to DL, UL, and SL for downlink, uplink, and sidelink, respectively. When there is no risk for confusion, the subscript xmay be dropped. There is one resource grid for a given antenna port p, subcarrier spacing configuration μ, and transmission direction (downlink, uplink, or sidelink). For uplink and downlink, the carrier bandwidth Ngridsize, μfor subcarrier spacing configuration μis given by the higher-layer parameter carrierBandwidthin the SCS-SpecificCarrierIE. The starting position Ngridstart, μfor subcarrier spacing configuration μis given by the higher-layer parameter offsetToCarrierin the SCS-SpecificCarrierIE.The frequency location of a subcarrier refers to the center frequency of that subcarrier.3GPP TS 38.211 V18.4.0 (2024-09)14(Release 18)
3GPPFor the downlink, the higher-layer parameter txDirectCurrentLocationin the SCS-SpecificCarrierIE indicates the location of the transmitter DC subcarrier in the downlink for each of the numerologies configured in the downlink. Values in the range 0 – 3299 represent the number of the DC subcarrier and the value 3300 indicates that the DC subcarrier is located outside the resource grid.For the uplink, the higher-layer parameter txDirectCurrentLocationin the UplinkTxDirectCurrentBWPIE indicates the location of the transmitter DC subcarrier in the uplink for each of the configured bandwidth parts, including whether the DC subcarrier location is offset by 7.5 kHz relative to the center of the indicated subcarrier or not. Values in the range 0 – 3299 represent the number of the DC subcarrier, the value 3300 indicates that the DC subcarrier is located outside the resource grid, and the value 3301 indicates that the position of the DC subcarrier in the uplink is undetermined.4.4.3Resource elementsEach element in the resource grid for antenna port pand subcarrier spacing configuration μis called a resource element and is uniquely identified by (k ,l)p, μwhere kis the index in the frequency domain and lrefers to the symbol position in the time domain relative to some reference point. Resource element (k ,l)p, μcorresponds to a physical resource and the complex value ak ,l(p, μ). When there is no risk for confusion, or no particular antenna port or subcarrier spacing is specified, the indices pand μmay be dropped, resulting in ak ,l(p)or ak ,l.4.4.4Resource blocks4.4.4.1GeneralA resource block is defined as NscRB=12consecutive subcarriers in the frequency domain. 4.4.4.2Point APoint A serves as a common reference point for resource block grids and is obtained from:-offsetToPointAfor a PCell downlink where offsetToPointArepresents the frequency offset between point A and the lowest subcarrier of the lowest resource block, which overlaps with the SS/PBCH block, or the SS/PBCH block after puncturing if applicable, used by the UE for initial cell selection, expressed in units of resource blocks assuming 15 kHz subcarrier spacing for FR1 and 60 kHz subcarrier spacing for FR2 and FR2-NTN;-for operation without shared spectrum channel access in FR1, FR2-1 and FR2-NTN, the lowest resource block has the subcarrier spacing provided by the higher layer parameter subCarrierSpacingCommon;-for operation with shared spectrum channel access in FR1 or FR2, and for operation without shared spectrum channel access in FR2-2, the lowest resource block has the subcarrier spacing same as the SS/PBCH block used by the UE for initial cell selection;-absoluteFrequencyPointAfor all other cases where absoluteFrequencyPointArepresents the frequency-location of point A expressed as in ARFCN.4.4.4.3Common resource blocksCommon resource blocks are numbered from 0 and upwards in the frequency domain for subcarrier spacing configuration μ. The center of subcarrier 0 of common resource block 0 for subcarrier spacing configuration μcoincides with 'point A'. The relation between the common resource block number nCRBμin the frequency domain and resource elements (k ,l)for subcarrier spacing configuration μis given bynCRBμ=⌊kNscRB⌋where kis defined relative to point A such that k=0corresponds to the subcarrier centered around point A.3GPP TS 38.211 V18.4.0 (2024-09)15(Release 18)
3GPP4.4.4.4Physical resource blocksPhysical resource blocks for subcarrier spacing configuration μare defined within a bandwidth part and numbered from 0 to NBWP,isize,μ−1where iis the number of the bandwidth part. The relation between the physical resource block nPRBμin bandwidth part iand the common resource block nCRBμis given bynCRBμ=nPRBμ+NBWP,istart,μwhere NBWP,istart,μis the common resource block where bandwidth part istarts relative to common resource block 0. When there is no risk for confusion the index μmay be dropped.4.4.4.5Virtual resource blocksVirtual resource blocks are defined within a bandwidth part and numbered from 0 to NBWP,isize−1where iis the number of the bandwidth part. 4.4.4.6Interlaced resource blocksMultiple interlaces of resource blocks are defined where interlace m∈{0,1,…, M−1}consists of common resource blocks {m, M+m,2M+m,3M+m,…}, with Mbeing the number of interlaces given by Table 4.4.4.6-1. The relation between the interlaced resource block nIRB,mμ∈{0,1,…}in bandwidth part iand interlace mand the common resource block nCRBμis given bynCRBμ=M nIRB,mμ+NBWP,istart,μ+((m−NBWP,istart,μ)mod M)where NBWP,istart,μis the common resource block where bandwidth part starts relative to common resource block 0. When there is no risk for confusion the index μmay be dropped. The UE expects that the number of common resource blocks in an interlace contained within bandwidth part iis no less than 10.Table 4.4.4.6-1: The number of resource block interlaces.μM010154.4.5Bandwidth partA bandwidth part is a subset of contiguous common resource blocks defined in clause 4.4.4.3 for a given numerology μiin bandwidth part ion a given carrier. The starting position NBWP,istart,μand the number of resource blocks NBWP,isize,μin a bandwidth part shall fulfil Ngrid, xstart, μ≤ NBWP,istart, μ<Ngrid, xstart, μ+Ngrid, xsize, μand Ngrid, xstart, μ<NBWP,istart, μ+NBWP,isize, μ≤ Ngrid, xstart, μ+Ngrid, xsize, μ, respectively. Configuration of a bandwidth part is described in clause 12 of [5, TS 38.213].A UE can be configured with up to four bandwidth parts in the downlink with a single downlink bandwidth part being active at a given time. The UE is not expected to receive PDSCH, PDCCH, or CSI-RS (except for RRM) outside an active bandwidth part.A UE can be configured with up to four bandwidth parts in the uplink with a single uplink bandwidth part being active at a given time. If a UE is configured with a supplementary uplink, the UE can in addition be configured with up to four bandwidth parts in the supplementary uplink with a single supplementary uplink bandwidth part being active at a given time. The UE shall not transmit PUSCH or PUCCH outside an active bandwidth part. For an active cell, the UE shall not transmit SRS configured by SRS-Resourceoutside an active bandwidth part.Unless otherwise noted, the description in this specification applies to each of the bandwidth parts. When there is no risk of confusion, the index μmay be dropped from NBWP,istart, μ, NBWP,isize, μ, Ngrid, xstart, μ, and Ngrid, xsize, μ.3GPP TS 38.211 V18.4.0 (2024-09)16(Release 18)
3GPP4.4.6Common MBS frequency resourceA common MBS frequency resource is a contiguous set of common resource blocks. The starting position NMBS,istart,μof the common MBS frequency resource iis defined relative to point A and the size of the common MBS frequency resource is given by NMBS,isize,μ. Resource blocks in a common MBS frequency resource are numbered in the same way as resource blocks in clause 4.4.4.4 with NBWP,istart,μand NBWP,isize,μreplaced by NMBS,istart,μand NMBS,isize,μ, respectively.A UE is not expected to receive PDSCH or PDCCH associated with MBS transmissions scheduled with G-RNTI, G-CS-RNTI, MCCH-RNTI, or Multicast-MCCH-RNTI outside the common MBS frequency resource.4.5Carrier aggregationTransmissions in multiple cells can be aggregated. Unless otherwise noted, the description in this specification applies to each of the serving cells. For carrier aggregation of cells with unaligned frame boundaries, the slot offset Nslot, offsetCAbetween a PCell/PScell and an SCell is determined by higher-layer parameter ca-SlotOffsetfor the SCell. The quantity μoffsetis defined as the maximum of the lowest subcarrier spacing configuration among the subcarrier spacings given by the higher-layer parameters scs-SpecificCarrierListconfigured for PCell/PSCell and the SCell, respectively. The slot offset Nslot, offsetCAfulfills-when the lowest subcarrier spacing configuration among the subcarrier spacings configured for the cell is μ=2for both cells or μ=3for both cells, the start of slot 0 for the cell whose point A has a lower frequency coincides with the start of slot qNslot, offsetCAmod Nslotframe, μoffsetfor the other cell where q=−1if point A of the PCell/PSCell has a frequency lower than the frequency of point A for the SCell, otherwise q=1;-otherwise, the start of slot 0 for the cell with the lower subcarrier spacing of the lowest subcarrier spacing given by the higher-layer parameters scs-SpecificCarrierListconfigured for the two cells, or the Pcell/PSCell if both cells have the same lowest subcarrier spacing given by the higher-layer parameters scs-SpecificCarrierListconfigured for the two cells, coincides with the start of slot qNslot, offsetCAmod Nslotframe, μoffsetfor the other cell where q=−1if the lowest subcarreier spacing configuration given by scs-SpecificCarrierListof the PCell/PSCell is smaller than or equal to the lowest subcarrier spacing given by scs-SpecificCarrierListfor the SCell, otherwise q=1.5Generic functions5.1Modulation mapperThe modulation mapper takes binary digits, 0 or 1, as input and produces complex-valued modulation symbols as output. 5.1.1π/2-BPSKIn case of π/2-BPSK modulation, bit b(i)is mapped to complex-valued modulation symbol d(i)according tod(i)=ejπ2(imod 2)√2[(1−2b(i))+j(1−2b(i))]5.1.2BPSKIn case of BPSK modulation, bit b(i)is mapped to complex-valued modulation symbol d(i)according to3GPP TS 38.211 V18.4.0 (2024-09)17(Release 18)
3GPPd(i)=1√2[(1−2b(i))+j(1−2b(i))]5.1.3QPSKIn case of QPSK modulation, pairs of bits, , are mapped to complex-valued modulation symbols d(i)according to5.1.416QAMIn case of 16QAM modulation, quadruplets of bits, , are mapped to complex-valued modulation symbols d(i)according to5.1.564QAMIn case of 64QAM modulation, hextuplets of bits, , are mapped to complex-valued modulation symbols d(i)according to5.1.6256QAMIn case of 256QAM modulation, octuplets of bits, , are mapped to complex-valued modulation symbols d(i)according to5.1.71024QAMIn case of 1024QAM modulation, 10-tuplets of bits, b(10i),b(10i+1),b(10i+2),b(10i+3),b(10i+4),b(10i+5),b(10i+6),b(10i+7),b(10i+8),b(10i+9), are mapped to complex-valued modulation symbols d(i)according tod(i)=¿1√682(1−2b(10i+0))[16−(1−2b(10i+2))[8−(1−2b(10i+4))[4−(1−2b(10i+6))[2−(1−2b(10i+8))]]]]+j1√682(1−2b(10i+1))[16−(1−2b(10i+3))[8−(1−2b(10i+5))[4−(1−2b(10i+7))[2−(1−2b(10i+9))]]]]3GPP TS 38.211 V18.4.0 (2024-09)18(Release 18)
3GPP5.2Sequence generation5.2.1Pseudo-random sequence generationGeneric pseudo-random sequences are defined by a length-31 Gold sequence. The output sequence c(n)of lengthMPN, wheren=0,1,..., MPN−1, is defined by c(n)=(x1(n+NC)+x2(n+NC))mod 2x1(n+31)=(x1(n+3)+x1(n))mod 2x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod 2where NC=1600and the first m-sequence x1(n)shall be initialized withx1(0)=1, x1(n)=0,n=1,2,...,30. The initialization of the second m-sequence, x2(n), is denoted by cinit=∑i=030x2(i)⋅2iwith the value depending on the application of the sequence.5.2.2Low-PAPR sequence generation type 1The low-PAPR sequence ru,v(α ,δ)(n)is defined by a cyclic shift αof a base sequence ¯ru,v(n)according to ru,v(α ,δ)(n)=ejαn¯ru,v(n),0≤n<MZCwhere MZC=m NscRB/2δis the length of the sequence. Multiple sequences are defined from a single base sequence through different values of αand δ. Base sequences ¯ru,v(n)are divided into groups, where u∈{0,1,...,29}is the group number and vis the base sequence number within the group, such that each group contains one base sequence (v=0) of each length MZC=m NscRB/2δ, and two base sequences (v=0,1) of each length MZC=m NscRB/2δ, . The definition of the base sequence ¯ru,v(0),...,¯ru,v(MZC−1)depends on the sequence length MZC.5.2.2.1Base sequences of length 36 or largerForMZC≥3NscRB, the base sequence ¯ru,v(0),...,¯ru,v(MZC−1)is given by¯ru,v(n)=xq(nmodNZC)xq(m)=e−jπ qm(m+1)NZCwhereq=⌊¯q+1/2⌋+v⋅(−1)⌊2¯q⌋¯q=NZC⋅(u+1)/31The length NZCis given by the largest prime number such thatNZC<MZC.5.2.2.2Base sequences of length less than 36For MZC∈{6,12,18,24}the base sequence is given by¯ru,v(n)=ej ϕ(n)π/4,0≤n≤MZC−1where the value of ϕ(n)is given by Tables 5.2.2.2-1 to 5.2.2.2-4. 3GPP TS 38.211 V18.4.0 (2024-09)19(Release 18)
3GPPFor MZC=30, the base sequence ¯ru,v(0),...,¯ru,v(MZC−1)is given by¯ru,v(n)=e−jπ(u+1)(n+1)(n+2)31,0≤n≤MZC−13GPP TS 38.211 V18.4.0 (2024-09)20(Release 18)
3GPPru,v(α ,δ)(n)=ru,v(n),0≤n<Mwhere M=m NscRB/2δis the length of the sequence. Base sequences ru,v(n)are divided into groups, where u∈{0,1,…,29}is the group number and vis the base sequence number within the group, such that each group contains one base sequence (v=0) of length M=m NscRB/2δ, 1/2≤m/2δ. The sequence ru,v(0),…,ru,v(M−1)is defined byru,v(n)=1√M∑i=0M−1~ru,v(i)e−j2πinMn=0,…, M−1where the definition of ~ru,v(i)depends on the sequence length.5.2.3.1Sequences of length 30 or largerFor M ≥30, the sequence ~ru,v(i)is obtained as the complex-valued modulations symbols resulting from π/2-BPSK modulation as defined in clause 5.1.1 applied to the binary sequence c(i)given by clause 5.2.1, initialized with cinit.5.2.3.2Sequences of length less than 30For M=6, the sequence ~ru,v(i)is given by~ru,v(i)=ej φ(i)π/8,0≤i≤ M−1where the value of φ(i)is given by Table 5.2.3.2-1. For M∈{12,18,24}, the sequence ~ru,v(i)is obtained as the complex-valued modulations symbols resulting from π/2-BPSK modulation as defined in clause 5.1.1 applied to the binary sequence b(i)given by Tables 5.2.3.2-2 to 5.2.3.2-4.3GPP TS 38.211 V18.4.0 (2024-09)25(Release 18)
3GPP-μis the subcarrier spacing configuration; -μ0is the largest μvalue among the subcarrier spacing configurations by scs-SpecificCarrierListfor each of uplink and downlink and by sl-SCS-SpecificCarrierListfor sidelink.The starting position of OFDM symbol lfor subcarrier spacing configuration μin a subframe is given bytstart ,lμ={0l=0tstart ,l−1μ+Tsymb,l−1μotherwiseIn case of cyclic prefix extension of the first OFDM symbol lallocated for PUSCH, SRS, PUCCH, PSCCH/PSSCH, PSFCH, or S-SS/PSBCH block transmission, the time-continuous signal sext(p, μ)(t)for the interval tstart,lμ−Text≤t<tstart,lμpreceding the first OFDM symbol for PUSCH, SRS, PUCCH, PSCCH/PSSCH, PSFCH, or S-SS/PSBCH block is given bysext(p, μ)(t)=sl(p, μ)(t)where t<0refers to the signal in the previous subframe and -for dynamically scheduled PUSCH, SRS, and PUCCH transmissionsText=min(max(Text',0),Tsymb,(l−1)mod7∙2μμ)Text'=∑k=1CiTsymb,(l−k)mod7∙2μμ−Δiwhere Δiis given by Table 5.3.1-1 with C1=1for μ∈{0,1}, C1=2for μ=2, and C2and C3given by the higher-layer parameters cp-ExtensionC2and cp-ExtensionC3, respectively, and TTAgiven by clause 4.3.1. For contention-based random access, or in absence of higher-layer configuration of C2and C3, the value of Cishall be set to the largest integer fulfilling Text'<Tsymb,(l−1)mod7∙2μμfor each of the values of i∈{2,3}. Textis applied to the first UL transmission scheduled by the scheduling DCI.-for a PUSCH transmission using configured grantText=∑k=12μTsymb,(l−k)mod7∙2μμ−Δiwhere Δiis given by Table 5.3.1-2 with the index igiven by the procedure in [6, TS 38.214].-for PSCCH/PSSCH, PSFCH, and S-SS/PSBCH block transmissionText=max(∑k=1CiTsymb,(l−k)mod7∙2μμ−Δi,0)where Δiand Ciare given by Table 5.3.1-3 with the index igiven by the procedure in [5, TS 38.213] or [6, TS 38.214].3GPP TS 38.211 V18.4.0 (2024-09)30(Release 18)
3GPPTable 5.3.1-1: The variables Ciand Δifor uplink cyclic prefix extension Textindex iCiΔi0--1C125∙10−62C216∙10−6+TTA3C325∙10−6+TTATable 5.3.1-2: The variable Δifor uplink cyclic prefix extension with configured grants.index iΔi016∙10−6125∙10−6234∙10−6343∙10−6452∙10−6561∙10−66∑k=12μTsymb,(l−k)mod7∙2μμTable 5.3.1-3: The variables Ciand Δifor sidelink cyclic prefix extension Index iμ=0μ=1μ=2CiΔiCiΔiCiΔi0------1116∙10−6116∙10−6116∙10−62125∙10−6125∙10−6216∙10−63134∙10−6216∙10−6225∙10−64143∙10−6225∙10−6reservedreserved5152∙10−6234∙10−6reservedreserved6161∙10−6243∙10−6reservedreserved7reservedreserved252∙10−6reservedreserved8reservedreserved261∙10−6reservedreserved5.3.2OFDM baseband signal generation for PRACHThe time-continuous signal sl(p , μ)(t)on antenna port pfor PRACH is defined bysl(p, μ)(t)=∑k=0LRA−1ak(p,RA)ej2π(k+K k1+k)Δ fRA(t−NCP,lRATc−tstartRA)K=Δ f/Δ fRAk1=k0μ+(NBWP,istart−Ngridstart,μ)NscRB−Ngridsize,μNscRB/2+nRAstartNscRB+{nRANRBRANscRBif LRA∈{139,839}nRANRBRANscRBif LRA∈{571,1151}in FR(NRB,UL,n0+nRAstart, μ−NRB,UL,n0start, μ)NscRBif LRA∈{571,1151}in FRk0μ=(Ngridstart,μ+Ngridsize,μ/2)NscRB−(Ngridstart,μ0+Ngridsize,μ0/2)NscRB2μ0−μ3GPP TS 38.211 V18.4.0 (2024-09)31(Release 18)
3GPPwhere tstartRA≤t<tstartRA+(Nu+NCP,lRA)Tcand -¯kis given by clause 6.3.3; -Δfis the subcarrier spacing of the initial uplink bandwidth part during initial access. Otherwise, Δfis the subcarrier spacing of the active uplink bandwidth part; -μ0is the largest μvalue among the subcarrier spacing configurations by the higher-layer parameter scs-SpecificCarrierList;-start,BWPiNis the lowest numbered resource block of the initial uplink bandwidth part and is derived by the higher-layer parameter initialUplinkBWPor initialUplinkBWP-RedCapduring initial access. Otherwise, start,BWPiNis the lowest numbered resource block of the active uplink bandwidth part and is derived by the higher-layer parameter BWP-Uplink; -nRAstartis the frequency offset of the lowest PRACH transmission occasion in frequency domain with respect to physical resource block 0 of the active uplink bandwidth part. The quantity nRAstartis given by the higher-layer parameter msgA-RO-FrequencyStartif configured and a type-2 random-access procedure is initiated as described in clause 8.1 of [5, TS 38.213], otherwise by msg1-FrequencyStartas described in clause 8.1 of [5 TS 38.213];-RAnis the PRACH transmission occasion index in frequency domain for a given PRACH transmission occasion in one time instance as given by clause 6.3.3.2; -RARBNis the number of resource blocks occupied and is given by the parameter allocation expressed in number of RBs for PUSCH in Table 6.3.3.2-1. -NRB,UL,nstart, μis the start CRB index of uplink RB set ncorresponding to the quantity RBn,ULstart , μ. The UE assumes that the RB set is defined as when the UE is not provided IntraCellGuardBandsPerSCS for an UL carrier as described in Clause 7 of [6, TS 38.214]-n0is the index of the RB set which contains the lowest PRACH transmission occasion in frequency domain indicated by nRAstart. The UE may assume that nRAstartis configured such that each PRACH transmission occasion is fully contained within an RB set.-LRAand Nuare given by clause 6.3.3-NCP,lRA=NCPRA+n∙16κwhere -for ΔfRA∈{1.25,5}kHz, n=0-for Δ fRA∈{15,30,60,120,480,960}kHz, nis the number of times the interval [tstartRA, tstartRA+(NuRA+NCPRA)Tc)overlaps with either time instance 0 or time instance (ΔfmaxNf/2000)⋅Tc=0.5 msin a subframeThe starting position tstartRAof the PRACH preamble in a subframe (for ) or in a 60 kHz slot (for Δ fRA∈{60,120,480,960}kHz) is given by3GPP TS 38.211 V18.4.0 (2024-09)32(Release 18)
3GPPwhere -the subframe or 60 kHz slot is assumed to start at t=0;-a timing advance value NTA=0shall be assumed; -Nuμand NCP,l−1μare given by clause 5.3.1;-0shall be assumed for ∆ fRA∈{1.25,5}kHz, otherwise the value of μcorresponds to ∆ fRA∈{15,30,60,120,480,960}kHz and the symbol position lis given byl=l0+ntRANdurRA+14nslotRAwhere -0lis given by the parameter "starting symbol" in Tables 6.3.3.2-2 to 6.3.3.2-4;-RAtnis the PRACH transmission occasion within the PRACH slot, numbered in increasing order from 0 to RA,slott1Nwithin a RACH slot where RA,slottNis given Tables 6.3.3.2-2 to 6.3.3.2-4 for LRA∈{139,571,1151}and fixed to 1 for ;-RAdurNis given by Tables 6.3.3.2-2 to 6.3.3.2-4;-RAslotnis given by-if ∆ fRA∈{1.25,5,15,60}kHz, then RAslot0n-if ∆ fRA∈{30,120}kHz and either of "Number of PRACH slots within a subframe" in Tables 6.3.3.2-2 to 6.3.3.2-3 or "Number of PRACH slots within a 60 kHz slot" in Table 6.3.3.2-4 is equal to 1, then nslotRA=1, otherwise nslotRA∈{0,1}-if ∆ fRA∈{480,960}kHz and -the "Number of PRACH slots within a 60 kHz slot" in Table 6.3.3.2-4 is equal to 1, then nslotRA=7for ∆ fRA=480kHz and nslotRA=15for ∆ fRA=960kHz, or-the "Number of PRACH slots within a 60 kHz slot" in Table 6.3.3.2-4 is equal to 2, then nslotRA∈{3,7}for ∆ fRA=480kHz and nslotRA∈{7,15}for ∆ fRA=960kHz.If the preamble format given by Tables 6.3.3.2-2 to 6.3.3.2-4 is A1/B1, A2/B2 or A3/B3, then-if ntRA=NtRA,slot−1, then the PRACH preamble with the corresponding PRACH preamble format from B1, B2 and B3 is transmitted in the PRACH transmission occasion;-otherwise the PRACH preamble with the corresponding PRACH preamble format from A1, A2 and A3 is transmitted in the PRACH transmission occasion5.3.3OFDM baseband signal generation for RIM-RSThe time-continuous signal sl(p, μ)(t)on antenna port pfor RIM-RS is defined bysl(p, μ)(t)=∑k=0LR IM−1ak(p,RIM)ej2π(k+k1)Δ fR IM(t−NCPR IMTc−tstart ,l0μ)3GPP TS 38.211 V18.4.0 (2024-09)33(Release 18)
3GPPwheretstart ,l0RIM≤t<tstart ,l0RIM+(NuRIM+NCPRIM)TcNuRIM=2⋅2048κ⋅2−μNCPRIM=NCP,l0RIM+NCP,lRIMl={0if l0=Nsymbslot−1l0+1otherwiseand -Δ fR IM=15⋅2μkHzwhere μ∈{0,1}is the subcarrier spacing configuration for the RIM-RS; -k1is the starting frequency offset of the RIM-RS as given by clause 7.4.1.6.4.3;-LR IM=12NRBRIMis the length of the RIM-RS sequence where NRBRIMis the bandwidth of the RIM-RS in resource blocks;-l0is the starting symbol given by clause 7.4.1.6.3;-tstart ,l0RIM=tstart ,lμis given by clause 5.3.1 with l=l0;-NCP,l0RIM=NCP,lμis given by clause 5.3.1 with l=l0.5.4Modulation and upconversionModulation and upconversion to the carrier frequency f0of the complex-valued OFDM baseband signal for antenna port p, subcarrier spacing configuration μ, and OFDM symbol lin a subframe assumed to start at t=0is given by -for PRACHRe{sl(p, μ)(t)ej2π f0t}-for RIM-RSRe{sl(p, μ)(t)ej2π f0RIM(t−tstart,l0μ−NCPRIMTc)}where f0RIMis the configured reference point for RIM-RS;-for all other channels and signalsRe{sl(p , μ)(t)⋅ej2πf0(t−tstart,lμ−NCP,lμTc)}NOTE:For the uplink, the signal sl(p, μ)(t)and the baseband signals part thereof should be filtered per UE implementation, as required, to meet the minimum requirements as specified in [14, 38.101-1], [15, 38.101-2], and [16, 38.101-5] for the respective frequency range. 3GPP TS 38.211 V18.4.0 (2024-09)34(Release 18)
3GPP6Uplink6.1Overview6.1.1Overview of physical channelsAn uplink physical channel corresponds to a set of resource elements carrying information originating from higher layers. The following uplink physical channels are defined:-Physical Uplink Shared Channel, PUSCH-Physical Uplink Control Channel, PUCCH-Physical Random Access Channel, PRACH6.1.2Overview of physical signalsAn uplink physical signal is used by the physical layer but does not carry information originating from higher layers. The following uplink physical signals are defined:-Demodulation reference signals, DM-RS-Phase-tracking reference signals, PT-RS-Sounding reference signal, SRS6.2Physical resourcesThe frame structure and physical resources the UE shall use when transmitting in the uplink transmissions are defined in Clause 4.The following antenna ports are defined for the uplink:-Antenna ports starting with 0 for demodulation reference signals for PUSCH-Antenna ports starting with 1000 for SRS, PUSCH-Antenna ports starting with 2000 for PUCCH-Antenna port 4000 for PRACH If PUSCH repetition Type B as described in clause 6.1 of [6, TS38.214] is applied to a physical channel, the UE transmission shall be such that the channel over which a symbol on the antenna port used for uplink transmission is conveyed can be inferred from the channel over which another symbol on the same antenna port is conveyed if the two symbols correspond to the same actual repetition of a PUSCH transmission with repetition Type B.If intra-slot frequency hopping is not enabled for a physical channel and PUSCH repetition Type B is not applied to the physical channel, the UE transmission shall be such that the channel over which a symbol on the antenna port used for uplink transmission is conveyed can be inferred from the channel over which another symbol on the same antenna port is conveyed if the two symbols correspond to the same slot.If intra-slot frequency hopping is enabled for a physical channel, the UE transmission shall be such that the channel over which a symbol on the antenna port used for uplink transmission is conveyed can be inferred from the channel over which another symbol on the same antenna port is conveyed only if the two symbols correspond to the same frequency hop, regardless of whether the frequency hop distance is zero or not.If DM-RS bundling is applied to PUSCH and/or PUCCH repetitions and/or transport-block processing over multiple slots as described in clause 6.1.7 of [6, 38.214], the UE transmission shall be such that the channel over which a symbol on the antenna port used for uplink transmission is conveyed can be inferred from the channel over which another symbol on the same antenna port is conveyed if the two symbols are transmitted within the same actual time-domain window.3GPP TS 38.211 V18.4.0 (2024-09)35(Release 18)
3GPP6.3Physical channels6.3.1Physical uplink shared channel6.3.1.1ScramblingUp to two codewords q∈{0,1}can be transmitted. In case of single-codeword transmission, q=0.For each codeword, the block of bits b(q)(0),…,b(q)(Mbit(q)−1), where Mbit(q)is the number of bits in codeword qtransmitted on the physical channel, shall be scrambled prior to modulation, resulting in a block of scrambled bits ~b(q)(0),…,~b(q)(Mbit(q)−1)according to the following pseudo codeSet i= 0while i<Mbit(q)if b(q)(i)=x// UCI placeholder bits~b(q)(i)=1elseif b(q)(i)=y// UCI placeholder bits~b(q)(i)=~b(q)(i−1)else~b(q)(i)=(b(q)(i)+c(q)(i))mod 2end ifend if i= i+ 1end whilewhere x and y are tags defined in [4, TS 38.212] and where the scrambling sequence c(q)(i)is given by clause 5.2.1. The scrambling sequence generator shall be initialized with cinit={nRNTI∙216+nRAPID∙210+nIDfor msgA on PUSCHnRNTI∙215+q∙214+nIDotherwisewhere-nID∈{0,1,…,1023}equals the higher-layer parameter dataScramblingIdentityPUSCHif configured and the RNTI equals the C-RNTI, MCS-C-RNTI, SP-CSI-RNTI or CS-RNTI, and the transmission is not scheduled using DCI format 0_0 in a common search space;-nID∈{0,1,…,1023}equals the higher-layer parameter msgA-DataScramblingIndexif configured and the PUSCH transmission is triggered by a Type-2 random access procedure as described in clause 8.1A of [5, TS 38.213];-nID=NIDcellotherwise3GPP TS 38.211 V18.4.0 (2024-09)36(Release 18)
3GPP-nRAPIDis the index of the random-access preamble transmitted for msgA as described in clause 5.1.3A of [11, TS 38.321]and where RNTInequals the RA-RNTI for msgA and otherwise corresponds to the RNTI associated with the PUSCH transmission as described in clause 6.1 of [6, TS 38.214] and clause 8.3 of [5, TS 38.213].6.3.1.2ModulationFor each codeword q, the block of scrambled bits ~b(q)(0),…,~b(q)(Mbit(q)−1)shall be modulated as described in clause 5.1 using one of the modulation schemes in Table 6.3.1.2-1, resulting in a block of complex-valued modulation symbols d(q)(0),…,d(q)(Msymb(q)−1). Table 6.3.1.2-1: Supported modulation schemes.Transform precoding disabledTransform precoding enabledModulation schemeModulation order mQModulation schemeModulation order mQπ/2-BPSK1QPSK2QPSK216QAM416QAM464QAM664QAM6256QAM8256QAM86.3.1.3Layer mappingThe complex-valued modulation symbols for each of the codewords to be transmitted shall be mapped onto up to four layers according to Table 7.3.1.3-1. Complex-valued modulation symbols d(q)(0),…,d(q)(Msymb(q)−1)for codeword qshall be mapped onto the layers x(i)=[x(0)(i)…x(υ−1)(i)]T, i=0,1,…, Msymblayer−1where υis the number of layers and Msymblayeris the number of modulation symbols per layer.6.3.1.4Transform precodingIf transform precoding is not enabled according to 6.1.3 of [6, TS38.214], y(λ)(i)=x(λ)(i)for each layer λ=0,1,...,υ−1.If transform precoding is enabled according to 6.1.3 of [6, TS38.214], υ=1and depends on the configuration of phase-tracking reference signals.If the procedure in [6, TS 38.214] indicates that phase-tracking reference signals are not being used, the block of complex-valued symbols x(0)(0),…, x(0)(Msymblayer−1)for the single layer λ=0shall be divided into Msymblayer/MscPUSCHsets, each corresponding to one OFDM symbol and . If the procedure in [6, TS 38.214] indicates that phase-tracking reference signals are being used, the block of complex-valued symbols x(0)(0),…, x(0)(Msymblayer−1)shall be divided into sets, each set corresponding to one OFDM symbol, and where set contains symbols and is mapped to the complex-valued symbols ~x(0)(l MscPUSCH+i')corresponding to OFDM symbol prior to transform precoding, with i'∈{0,1,…, MscPUSCH−1}and . The index mof PT-RS samples in set , the number of samples per PT-RS group Nsampgroup, and the number of PT-RS groups NgroupPT-RSare defined in clause 6.4.1.2.2.2. The quantity when OFDM symbol contains one or more PT-RS samples, otherwise .Transform precoding shall be applied according to3GPP TS 38.211 V18.4.0 (2024-09)37(Release 18)
3GPPresulting in a block of complex-valued symbols y(0)(0),…, y(0)(Msymblayer−1). The variableMscPUSCH=MRBPUSCH⋅NscRB, where MRBPUSCHrepresents the bandwidth of the PUSCH in terms of resource blocks, and shall fulfil532532PUSCHRBMwhere α2,α3,α5is a set of non-negative integers. 6.3.1.5PrecodingThe block of vectors [y(0)(i)…y(υ−1)(i)]Tshall be precoded according to[z(p0)(i)⋮z(pρ−1)(i)]=W[y(0)(i)⋮y(υ−1)(i)]where i=0,1,…, Msymbap−1, Msymbap=Msymblayer. The set of antenna ports {p0,…, pρ−1}shall be determined according to the procedure in [6, TS 38.214]. For non-codebook-based transmission, the precoding matrix Wequals the identity matrix.For codebook-based transmission, the precoding matrix Wdepends on the number of antenna ports used for the transmission: -for single-layer transmission on a single antenna port, W=1;-for transmissions using 2, or 4 antenna ports, Wis given by Tables 6.3.1.5-1 to 6.3.1.5-7; -for transmissions using 8 antenna ports, Wis given byWf(i)=W 'iwhere -the subscripts iand f(i)denote the row of the respective matrix;-f(i)is given by Table 6.3.1.5-8;-the intermediate precoding matrix W 'is given by Tables 6.3.1.5-9 to 6.3.1.5-24, 6.3.1.5-29 to 6.3.1.5-36, and 6.3.1.5-39 to 6.3.1.5-47 with 0m×nrepresenting the all-zero matrix with mrows and ncolumns;-the submatrices Wm,nare given by Tables 6.3.1.5-25 to 6.3.1.5-28 and 6.3.1.5-37 to 6.3.1.5-38.The TPMI index used in the tables above is obtained from the DCI scheduling the uplink transmission or the higher layer parameters according to the procedure in [6, TS 38.214]. When the higher-layer parameter txConfigis not configured, the precoding matrix W=1.3GPP TS 38.211 V18.4.0 (2024-09)38(Release 18)
3GPPTable 6.3.1.5-1: Precoding matrix Wfor single-layer transmission using two antenna ports.TPMI indexW(ordered from left to right in increasing order of TPMI index)0 – 51√2[10]1√2[01]11211121j121j121--Table 6.3.1.5-2: Precoding matrix Wfor single-layer transmission using four antenna ports with transform precoding enabled.TPMI indexW(ordered from left to right in increasing order of TPMI index)0 – 712[1000]12[0100]12[0010]12[0001]12[1010]12[10−10]12[10j0]12[10−j0]8 – 1512[0101]12[010−1]12[010j]12[010−j]12[111−1]12[11jj]12[11−11]12[11−j−j]16 – 2312[1j1j]12[1jj1]12[1j−1−j]12[1j−j−1]12[1−111]12[1−1j−j]12[1−1−1−1]12[1−1−jj]24 – 2712[1−j1−j]12[1−jj−1]12[1−j−1j]12[1−j−j1]----Table 6.3.1.5-3: Precoding matrix Wfor single-layer transmission using four antenna ports with transform precoding disabled.TPMI indexW(ordered from left to right in increasing order of TPMI index)0 – 712[1000]12[0100]12[0010]12[0001]12[1010]12[10−10]12[10j0]12[10−j0]8 – 1512[0101]12[010−1]12[010j]12[010−j]12[1111]12[11jj]12[11−1−1]12[11−j−j]16 – 2312[1j1j]12[1jj−1]12[1j−1−j]12[1j−j1]12[1−11−1]12[1−1j−j]12[1−1−11]12[1−1−jj]24 – 2712[1−j1−j]12[1−jj1]12[1−j−1j]12[1−j−j−1]----3GPP TS 38.211 V18.4.0 (2024-09)39(Release 18)
3GPPTable 6.3.1.5-4: Precoding matrix Wfor two-layer transmission using two antenna ports with transform precoding disabled.TPMI indexW(ordered from left to right in increasing order of TPMI index)0 – 21√2[1001]12[111−1]12[11j−j]-Table 6.3.1.5-5: Precoding matrix Wfor two-layer transmission using four antenna ports with transform precoding disabled.TPMI indexW(ordered from left to right in increasing order of TPMI index)0 – 312[10010000]12[10000100]12[10000001]12[00100100]4 – 712[00100001]12[00001001]12[1001100−j]12[1001100j]8 – 1112[1001−j001]12[1001−j00−1]12[1001−100−j]12[1001−100j]12 – 1512[1001j001]12[1001j00−1]12√2[11111−11−1]12√2[1111j−jj−j]16 – 1912√2[11jj1−1j−j]12√2[11jjj−j−11]12√2[11−1−11−1−11]12√2[11−1−1j−j−jj]20 – 2112√2[11−j−j1−1−jj]12√2[11−j−jj−j1−1]--3GPP TS 38.211 V18.4.0 (2024-09)40(Release 18)
3GPPTable 6.3.1.5-6: Precoding matrix Wfor three-layer transmission using four antenna ports with transform precoding disabled.TPMI indexW(ordered from left to right in increasing order of TPMI index)0 – 312[100010001000]12[100010100001]12[100010−100001]12√3[1111−1111−11−1−1]4 – 612√3[1111−11jj−jj−j−j]12√3[111−11−111−1−111]12√3[111−11−1jj−j−jjj]-Table 6.3.1.5-7: Precoding matrix Wfor four-layer transmission using four antenna ports with transform precoding disabled.TPMI indexW(ordered from left to right in increasing order of TPMI index)0 – 312[1000010000100001]12√2[110000111−100001−1]12√2[11000011j−j0000j−j]14[11111−11−111−1−11−1−11]414[11111−11−1jj−j−jj−j−jj]---Table 6.3.1.5-8: The port mapping function f(i)for transmission using 8 antenna ports.iHigher-layer parameter CodebookTypeULcodebook1codebook2codebook3codebook4antenna port groupf(i)antenna port groupf(i)antenna port groupf(i)antenna port groupf(i)00000000011141122411223355334412224455365566633667777773GPP TS 38.211 V18.4.0 (2024-09)41(Release 18)
3GPPTable 6.3.1.5-9: Intermediate precoding matrix W 'for codebook1=ng1n4n1and single-layer transmission using eight antenna ports.TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 712√2[11111111]12√2[1111jjjj]12√2[1111−1−1−1−112√2[1111−j−j−j−j12√2[1j−1−j1j−1−j12√2[1j−1−jj−1−j112√2[1j−1−j−1−j1j12√2[1j−1−j−j1j−18 – 1512√2[1−11−11−11−1]12√2[1−11−1j−jj−j12√2[1−11−1−11−1112√2[1−11−1−jj−jj12√2[1−j−1j1−j−1j12√2[1−j−1jj1−j−112√2[1−j−1j−1j1−j12√2[1−j−1j−j−1j13GPP TS 38.211 V18.4.0 (2024-09)42(Release 18)
3GPPTable 6.3.1.5-10: Intermediate precoding matrix W 'for codebook1=ng1n4n1and two-layer transmission using eight antenna ports with transform precoding disabled.TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 714[111111111−11−11−11−1]14[11111111j−jj−jj−jj−j]14[111j1−11−j1−11−j111j]14[111j1−11−jj−jj1jjj−1]14[111−1111−11−1111−111]14[111−1111−1j−jjjj−jjj]14[111−j1−11j1−11j111−j]14[111−j1−11jj−jj−1jjj1]8 – 1514[11jj−1−1−j−1−1j−−11−jj14[11jj−1−1−j−j−−11−jj1−114[11j−1−11−j−11−1j1−1−1−j114[11j−1−11−j−1j−−1j−j−1j14[11j−−1−1−jj1−1jj−11−j−14[11j−−1−1−jjj−−1−1−jj1114[11j1−11−j11−1j−1−1−1−j−114[11j1−11−j1j−j−1−j−j−j1−j16 – 2314[11−1−111−1−11−1−111−1−1114[11−1−111−1−1j−−jjj−−jj14[11−1−1−1−1j1−1−1j11−1−14[11−1−1−1−1jj−−j−1jj−j114[11−1111−111−1−1−11−1−1−114[11−1111−11j−−j−j−−j−14[11−1j1−1−1−1−1−1−11−1j14[11−1j1−1−1−j−−j1jj−j−124 – 3114[11−j−−1−1jj1−1−jj−11j−14[11−j−−1−1jjj−1−1−jj−1114[11−j1−11j11−1−j−1−1−1j−114[11−j1−11j1j−j1−j−j−j−1−j14[11−jj−1−1j−1−1−j−−11jj14[11−jj−1−1j−j−11−jj−1−114[11−j−1−11j−11−1−j1−1−1j114[11−j−1−11j−1j−1j−j−−1j3GPP TS 38.211 V18.4.0 (2024-09)43(Release 18)
3GPPTable 6.3.1.5-11: Intermediate precoding matrix W 'for codebook1=ng1n4n1and three-layer transmission using eight antenna ports with transform precoding disabled.TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 312√6[1111j11−111−j111−11j−11−1−11−j−112√6[1111j11−111−j1jj−jj−1−jj−j−jj1−j12√6[1111−111111−1111−11−1−111−11−1−1]12√6[1111−111111−11jj−jj−j−jjj−jj−j−j]4 – 712√6[1111−j11−111j111−11−j−11−1−11j−112√6[1111−j11−111j1jj−jj1−jj−j−jj−1−j12√6[111j−1j−11−1−j−1−11−1j−1−−111−j−1j12√6[111j−1j−11−−j−1−jj−−1−j1−jjj1−j−8 – 1112√6[111j−j−1−1−−jj−11−j−j−−1−11−jj12√6[111j−j−1−1−−jj−jj−−111−j−j1−1−12√6[111j1j−11−1−j1−j11−1j1−j−111−j1j]12√6[111j1j−11−1−j1−jjj−j−1j1−jjj1j−1]12 – 1512√6[111−1−j−1−11−1j−11−−1−j11−1−−1j112√6[111−1−j−1−11−1j−jj−−j1j−j−−j−112√6[111−11−1111−11−111−1−11111−1−111]12√6[111−11−1111−11−1jj−j−jjjjj−j−jjj]16 – 1912√6[111−1j−1−11−1−j−11−−1j11−1−−1−j112√6[111−1j−1−11−1−j−jj−−j−1j−j−−j112√6[111−j1−j−11−1j1j11−1−j1j−111j1−j]12√6[111−j1−j−11−1j1jjj−j1j−1−jjj−1j1][111−jj−[111−jj−[111−j−1−[111−j−1−3GPP TS 38.211 V18.4.0 (2024-09)44(Release 18)
3GPPTable 6.3.1.5-12: Intermediate precoding matrix W 'for codebook1=ng1n4n1and four-layer transmission using eight antenna ports with transform precoding disabled.TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 314√2[11111j11−11−1−j1−11−1−1j−1−1−1−111−j−114√2[11111j11−11−1−j1−jj−j−j−1−j1j−j−jj1−j−14√2[11111−11−11111−11−11−1−1−1−1111−1−1−1−1114√2[11111−11−11111−11−jj−j−j−j−jjj−j−j−j−j4 – 714√2[11111−j1−1−11−1j111−1−1−j−11−1−111j−1−14√2[11111−j1−1−11−1j1jj−j−j1−j−j−j−jj−1−j114√2[111j−1j−11−1−j−1−j11−1j−1−j−111−j−1j14√2[111j−1j−11−1−j−1−jjj−j−1−j1−jjj1−j−18 – 1114√2[111j−jj−1−1−1−jj−j11−1j−j−j−1−11−jjj14√2[111j−jj−1−1−1−jj−jjj−j−111−j−jj1−1−114√2[1111j1j1−11−11−j1−j111−1−j1−j−−111−−j1j−14√2[1111j1j1−11−11−j1−j1jj−j−−1j1−−jjj−1j−1−12 – 1514√2[111−1−j−11−11−1j−111−1−1−j11−1−1−1j114√2[111−1−j−11−11−1j−1jj−j−j1jj−j−j−j−1j14√2[1111−11−111111−11−1111−1−−111−11−1−−111−14√2[1111−11−111111−11−11jj−j−−jjj−jj−j−−jjj−16 – 1914√2[111−1j−11−11−1−j−111−1−1j11−1−1−1−j114√2[111−1j−11−11−1−j−1jj−j−j−1jj−j−j−j1j14√2[1111−j1−j1−11−11j1j111−1−−j1j−−111−j1−j−14√2[1111−j1−j1−11−11j1j1jj−j−1j−1−−jjj−−1j1−[111−jj−j[111−jj−j[111−j−1−j[111−j−1−j3GPP TS 38.211 V18.4.0 (2024-09)46(Release 18)
3GPPTable 6.3.1.5-13: Intermediate precoding matrix W 'for codebook1=ng1n4n1and five-layer transmission using eight antenna ports with transform precoding disabled.TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 112√10[1111111jj−111−1−1111−j−j−11−11−111−1j−j−11−1−1111−1−jj−1]12√10[1111111jj−111−1−1111−j−j−1j−j1−11j−jj−j−1j−j−111j−j−jj−1]2 – 312√10[11111jj−1−1−j−1−111−1−j−j−1−1j1−11−11j−j−11−j−111−1−1−jj−11j]12√10[11111jj−1−1−j−1−111−1−j−j−1−1jj−j1−11−11−11−j−jj1−1−11−1−11j]4 – 512√10[11111−1−1−j−j111−1−11−1−1jj11−11−11−11−jj11−1−111−11j−j1]12√10[11111−1−1−j−j111−1−11−1−1jj1j−j1−11−jj−jj1j−j−111−jjj−j1]6 – 712√10[11111−j−j11j−1−111−1jj11−j1−11−11−jj1−1j−111−1−1j−j1−1−j]12√10[11111−j−j11j−1−111−1jj11−jj−j1−111−11−1j−jj1−1−1−111−1−j]3GPP TS 38.211 V18.4.0 (2024-09)48(Release 18)
3GPPTable 6.3.1.5-14: Intermediate precoding matrix W 'for codebook1=ng1n4n1and six-layer transmission using eight antenna ports with transform precoding disabled. TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 114√3[1111111jj−111−1−1111−j−j−11−11−111−1j−j−11−1−1111−1−jj−114√3[1111111jj−111−1−1111−j−j−1j−jj−j1j−j−11−1j−j−jj1j−j1−1−12 – 314√3[11111jj−1−1−j−1−111−1−j−j−1−1j1−11−11j−j−11−j−111−1−1−jj−11j14√3[11111jj−1−1−−1−111−1−j−j−1−1jj−jj−j1−11−jj−−jjj−j−11−1−jjj4 – 514√3[11111−1−1−j−j111−1−11−1−1jj11−11−11−11−jj11−1−111−11j−j114√3[11111−1−1−j−j111−1−11−1−1jj1j−jj−j1−jj1−11j−j−jj1−jj−1116 – 714√3[11111−j−j11j−1−111−1jj11−j1−11−11−jj1−1j−111−1−1j−j1−1−j14√3[11111−j−j11j−1−111−1jj11−jj−jj−j11−1j−jj−jjj−j−1−11j−j−j3GPP TS 38.211 V18.4.0 (2024-09)49(Release 18)
3GPPTable 6.3.1.5-15: Intermediate precoding matrix W 'for codebook1=ng1n4n1and seven-layer transmission using eight antenna ports with transform precoding disabled. TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 112√14[11111111j−1−1−11−111−11−j−1−1j1−111−111−1j−11−1−1−11−1−1−1−j−11j12√14[11111111j−1−1−11−111−11−j−1−1jj−jj1−11j−j−1−11−j−j−j1−1−j−j1−11j2 – 312√14[11111jj−1−j−j−1−11−1−1−j−j−1jj1−111−1j−j−1−jj−111−11−jj−1j−j12√14[11111jj−1−j−j−1−11−1−1−j−j−1jjj−jj1−1−11−j−jj−jjj−111−1−jj−jTable 6.3.1.5-16: Intermediate precoding matrix W 'for codebook1=ng1n4n1and eight-layer transmission using eight antenna ports with transform precoding disabled. TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 118[111111111jj−1−1−11−1−111−11−j−j−1−1j1−11−11−111−1j−j−11−1−1−111−1−1−1−jj−11j18[111111111jj−1−1−11−1−111−11−j−j−1−1jj−jj−j1−11j−j−11−11−j−j−jj1−1−j−j1−1−11j2 – 318[111111jj−1−1−j−j−1−111−1−1−j−j−1−1jj1−11−11−1j−j−11−jj−111−1−11−jj−11j−j18[111111jj−1−1−j−j−1−111−1−1−j−j−1−1jjj−jj−j1−1−11−jj−jj−jjj−j−111−1−jjj−j3GPP TS 38.211 V18.4.0 (2024-09)50(Release 18)
3GPPTable 6.3.1.5-17: Intermediate precoding matrix W 'forcodebook1=ng1n2n2and single-layer transmission using eight antenna ports.TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 712√2[11111111]12√2[1111jjjj]12√2[1111−1−1−1−112√2[1111−j−j−j−j12√2[1−11−11−11−112√2[1−11−1j−jj−j12√2[1−11−1−11−1112√2[1−11−1−jj−jj8 – 1512√2[11−1−111−1−1]12√2[11−1−1jj−j−j12√2[11−1−1−1−11112√2[11−1−1−j−jjj12√2[1−1−111−1−1112√2[1−1−11j−j−jj12√2[1−1−11−111−112√2[1−1−11−jjj−j3GPP TS 38.211 V18.4.0 (2024-09)51(Release 18)
3GPPTable 6.3.1.5-18: Intermediate precoding matrix W 'forcodebook1=ng1n2n2and two-layer transmission using eight antenna ports with transform precoding disabled.TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 714[111111111−11−11−11−1]14[11111111j−jj−jj−jj−j]14[11111−11−11−11−11111]14[11111−11−1j−jj−jjjjj]14[111−1111−11−1111−111]14[111−1111−1j−jjjj−jjj]14[111−11−1111−111111−1]14[111−11−111j−jjjjjj−j]8 – 1514[11−1−11−1−1−−111−−1114[11−1−11−1−j−−jjj−−jj14[11−1−1−−111−−1111−1−14[11−1−1−−11j−−jjjj−j−14[11−1111−111−−1−1−−1−14[11−1111−11j−−j−j−−j−14[11−111−−1−1−−1−11−1114[11−111−−1−j−−j−jj−jj16 – 2314[1111−1−−1−1−1−−11−1114[1111−1−−1−j−j−−jj−jj14[1111−11−111−1−−1−−1−14[1111−11−11j−j−−j−−j−14[111−−1−−111−11−11−1−14[111−−1−−11j−jj−jj−j−14[111−−11−1−1−11−1−−1114[111−−11−1−j−jj−j−−jj24 – 3114[11−1−−1−111−−11−111−14[11−1−−1−11j−−jj−jjj−14[11−1−−111−1−−11−1−1114[11−1−−111−j−−jj−j−jj14[11−11−1−1−1−−1−−111114[11−11−1−1−j−−j−−jjjj14[11−11−11111−−1−−1−1−14[11−11−1111j−−j−−j−j−3GPP TS 38.211 V18.4.0 (2024-09)52(Release 18)
3GPPTable 6.3.1.5-19: Intermediate precoding matrix W 'for codebook1=ng1n2n2and three-layer transmission using eight antenna ports with transform precoding disabled.TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 312√6[1111111−111−1111−111−11−1−11−1−112√6[1111111−111−11jj−jjj−jj−j−jj−j−j12√6[1111−111111−1111−11−1−111−11−1−1]12√6[1111−111111−11jj−jj−j−jjj−jj−j−j]4 – 712√6[1111−111−1111111−11−1−11−1−111−112√6[1111−111−11111jj−jj−j−jj−j−jjj−j12√6[111−1−1−11−11−11−111−1−1−111−1−1−11112√6[111−1−1−1−11−11−jj−−j−jjj−j−−jjj8 – 1112√6[111−11−1111−11−111−1−11111−1−11112√6[111−11−1111−11−1jj−j−jjjjj−j−jjj12√6[111−11−11−11−1−1−111−1−1111−1−1−1−1112√6[111−11−1−11−1−1−jj−−jjjj−j−−j−jj12 – 1512√6[111111−11−1−11−111−111−1−111−11112√6[111111−11−1−11−1jj−jjj−j−jjj−jjj12√6[1111−11−1−1−1−11−111−11−1−1−1−11−11112√6[1111−11−1−1−−11−jj−j−j−−j−jj−jjj16 – 1912√6[1111−11−11−−1−1−11−1−1−−111−1−1112√6[1111−11−11−−1−1−jj−j−j−−jj−j−j12√6[111−1−1−1−11−11−1111−1−1−11−1111−1−112√6[111−1−1−−11−1−11jj−−j−jj−jjjj−j−[111−11−[111−11−[111−11−1][111−11−1]3GPP TS 38.211 V18.4.0 (2024-09)53(Release 18)
3GPPTable 6.3.1.5-20: Intermediate precoding matrix W 'forcodebook1=ng1n2n2and four-layer transmission using eight antenna ports with transform precoding disabled.TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 314√2[1111111−111−1111−111−11−1−11−1−114√2[1111111−111−11jj−jjj−jj−j−jj−j−j14√2[1111−11−1111−11−11−1−1−1−111−1−1−1−114√2[1111−11−1111−11−jj−j−j−j−jjj−j−j−j−j4 – 714√2[1111−111−1111111−11−1−11−1−111−114√2[1111−111−11111jj−jj−j−jj−j−jjj−j14√2[111−1−1−11−11−11−111−1−1−111−1−1−11114√2[111−1−1−11−11−11−1jj−j−j−jjj−j−j−jjj8 – 1114√2[111−11−1111−11−111−1−11111−1−11114√2[111−11−1111−11−1jj−j−jjjjj−j−jjj14√2[111−11−11−11−1−1−111−1−1111−1−1−1−1114√2[111−11−11−11−1−1−1jj−j−jjjj−j−j−j−jj12 – 1514√2[111111−11−1−11−111−111−1−111−11114√2[111111−11−1−11−1jj−jjj−j−jjj−jjj14√2[1111−11−1−1−1−11−111−11−1−1−1−11−11114√2[1111−11−1−1−1−11−1jj−jj−j−j−j−jj−jjj16 – 1914√2[1111−11−11−1−1−1−111−11−1−1−111−1−1114√2[1111−11−11−1−1−1−1jj−jj−j−j−jjj−j−jj14√2[111−1−1−1−11−11−1111−1−1−11−1111−1−114√2[111−1−1−1−11−11−11jj−j−j−jj−jjjj−j−j[111−11−1[111−11−1[111−11−1[111−11−13GPP TS 38.211 V18.4.0 (2024-09)55(Release 18)
3GPPTable 6.3.1.5-21: Intermediate precoding matrix W 'forcodebook1=ng1n2n2and five-layer transmission using eight antenna ports with transform precoding disabled. TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 112√10[111111111−111−1−1−111−1−111−11−111−11−1−11−1−11−11−1−111]12√10[111111111−111−1−1−111−1−11j−j1−11j−j1−1−1j−j−11−1j−j−111]2 – 312√10[11111−1−1−1−1111−1−1−1−1−111−11−11−11−11−1111−1−11−1−111−1−1]12√10[11111−1−1−1−1111−1−1−1−1−111−1j−j1−11−jj−111j−j−11−1−jj1−1−1]4 – 512√10[111111111−1−1−1111−1−111−11−11−111−11−1−1−111−11−111−1−1]12√10[111111111−1−1−1111−1−111−1j−j1−11j−j1−1−1−jj1−11−jj1−1−1]6 – 712√10[11111−1−1−1−11−1−111111−1−111−11−11−11−111−111−111−1−111]12√10[11111−1−1−1−11−1−111111−1−11j−j1−11−jj−111−jj1−11j−j−111]3GPP TS 38.211 V18.4.0 (2024-09)57(Release 18)
3GPPTable 6.3.1.5-22: Intermediate precoding matrix W 'forcodebook1=ng1n2n2and six-layer transmission using eight antenna ports with transform precoding disabled. TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 114√3[111111111−111−1−1−111−1−111−11−111−11−1−11−1−11−11−1−11114√3[111111111−111−1−1−111−1−11j−jj−j1j−jj−j−1j−j−jj−1j−j−jj12 – 314√3[11111−1−1−1−1111−1−1−1−1−111−11−11−11−11−1111−1−11−1−111−1−114√3[11111−1−1−1−1111−1−1−1−1−111−1j−jj−j1−jj−jj1j−j−jj−1−jjj−j−14 – 514√3[111111111−1−1−1111−1−111−11−11−111−11−1−1−111−11−111−1−114√3[111111111−1−1−1111−1−111−1j−jj−j1j−jj−j−1−jjj−j1−jjj−j−16 – 714√3[11111−1−1−1−11−1−111111−1−111−11−11−11−111−111−111−1−11114√3[11111−1−1−1−11−1−111111−1−11j−jj−j1−jj−jj1−jjj−j1j−j−jj13GPP TS 38.211 V18.4.0 (2024-09)58(Release 18)
3GPPTable 6.3.1.5-23: Intermediate precoding matrix W 'forcodebook1=ng1n2n2and seven-layer transmission using eight antenna ports with transform precoding disabled. TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 112√14[111111111−1−1−11−111−11−1−1−111−111−111−11−11−1−1−11−1−1−1−1−11112√14[111111111−1−1−11−111−11−1−1−11j−jj1−11j−jj−11−j−j−j1−1−j−j−j−1112 – 312√14[111111−1−1−111111−111−−1−1111−1−111−11−11−11−111−1−11−1−−1111−1−12√14[111111−1−1−111111−111−−1−1111−j−jj1−11−jj−j1−11j−j−j1−1−−jjj1−1−4 – 512√14[111111111−1−1−−1−11−1−11−1−1111−1−111−111−11−11−−111−111−1111−1−12√14[111111111−1−1−−1−11−1−11−1−1111−j−jj1−11j−jj−11−−jjj−111−jjj1−1−6 – 712√14[11111−1−1−111−1−11−1−111−1−1−11−111−1−11−11−1−111−111−1−1−1112√14[11111−1−1−111−1−11−1−111−1−1−1j−jj1−1−jj−j1−1−jjj−11j−j−j−113GPP TS 38.211 V18.4.0 (2024-09)59(Release 18)
3GPPTable 6.3.1.5-24: Intermediate precoding matrix W 'forcodebook1=ng1n2n2and eight-layer transmission using eight antenna ports with transform precoding disabled. TPMI indexIntermediate precoder matrix W '(ordered from left to right in increasing order of TPMI index)0 – 118[11111111111−1−1−11−1−111−11−1−1−1−111−11−11−111−11−1−11−1−1−111−1−1−1−11−11118[11111111111−1−1−11−1−111−11−1−1−1−11j−jj−j1−11j−jj−j−11−j−j−jj1−1−j−j−jj−1112 – 318[1111111−1−1−1−111111−1−111−−1−11111−1−11−11−11−11−111−111−1−111−1−−111−11−1−18[1111111−1−1−1−111111−1−111−−1−11111−j−jj−j1−11−jj−jj1−11j−j−jj1−1−−jjj−j1−1−4 – 518[11111111111−1−1−−1−111−1−11−1−11111−1−11−11−111−11−1−11−−111−1−111−111−11−1−18[11111111111−1−1−−1−111−1−11−1−11111−j−jj−j1−11j−jj−j−11−−jjj−j−111−jjj−j1−1−6 – 718[111111−1−1−1−111−1−111−1−111−1−1−1−11−11−11−1−11−111−1−111−1−111−1−11−1118[111111−1−1−1−111−1−111−1−111−1−1−1−1j−jj−j1−1−jj−jj1−1−jjj−j−11j−j−jj−113GPP TS 38.211 V18.4.0 (2024-09)60(Release 18)
3GPPTable 6.3.1.5-25: Submatrices W1,ifor codebook2and used in Tables 6.3.1.5-29 to 6.3.1.5-31.iW1,i(ordered from left to right in increasing order of i)0 – 712[1111]12[11jj]12[11−1−1]12[11−j−j]12[1j1j]12[1jj−1]12[1j−1−j]12[1j−j1]8 – 15 12[1−11−1]12[1−1j−j]12[1−1−11]12[1−1−jj]12[1−j1−j]12[1−jj1]12[1−j−1j]12[1−j−j−1]Table 6.3.1.5-26: Submatrices W2,ifor codebook2and used in Tables 6.3.1.5-30 to 6.3.1.5-33.iW2,i(ordered from left to right in increasing order of i)0 – 312√2[11111−11−1]12√2[1111j−jj−j]12√2[11jj1−1j−j]12√2[11jjj−j−11]4 – 712√2[11−1−11−1−11]12√2[11−1−1j−j−jj]12√2[11−j−j1−1−jj]12√2[11−j−jj−j1−1]Table 6.3.1.5-27: Submatrices W3,ifor codebook2and used in Tables 6.3.1.5-31, 6.3.1.5-33, 6.3.1.5-34, and 6.3.1.5-35.iW3,i(ordered from left to right in increasing order of i)0 – 312√3[1111−1111−11−1−112√3[1111−11jj−jj−j−j12√3[111−11−111−1−11112√3[111−11−1jj−j−jjjTable 6.3.1.5-28: Submatrices W4,ifor codebook2and used in Tables 6.3.1.5-32, 6.3.1.5-35, and 6.3.1.5-36.iW4,i(ordered from left to right in increasing order of i)0 – 114[11111−11−111−1−11−1−11]14[11111−11−1jj−j−jj−j−jj]3GPP TS 38.211 V18.4.0 (2024-09)61(Release 18)
3GPPTable 6.3.1.5-29: Intermediate precoding matrix W 'for codebook2and single-layer transmission using eight antenna ports.TPMI index iIntermediate precoder matrix W '0 – 151√2[W1,i04×1]16 – 311√2[04×1W1,(i−16)]3212√2[11111111]Table 6.3.1.5-30: Intermediate precoding matrix W 'for codebook2and two-layer transmission using eight antenna ports with transform precoding disabled. TPMI index iIntermediate precoder matrix W '0 – 71√2[W2,i04×2]8 – 151√2[04×2W2,(i−8)]16 – 2711√2[W1,⌊(i−16)/16⌋04×104×1W1,(imod16)]Table 6.3.1.5-31: Intermediate precoding matrix W 'for codebook2and three-layer transmission using eight antenna ports with transform precoding disabled. TPMI index iIntermediate precoder matrix W '0 – 31√2[W3,i04×3]4 – 71√2[04×3W3,(i−4)]8 – 1351√2[W1,⌊(i−8)/8⌋04×204×1W2,(imod8)]136 – 2631√2[W2,⌊(i−136)/16⌋04×104×2W1,((i−136)mod16)]3GPP TS 38.211 V18.4.0 (2024-09)62(Release 18)
3GPPTable 6.3.1.5-32: Intermediate precoding matrix W 'for codebook2and four-layer transmission using eight antenna ports with transform precoding disabled. TPMI index iIntermediate precoder matrix W '0 – 11√2[W4,i04×4]2 – 31√2[04×4W4,(i−2)]4 – 671√2[W2,⌊(i−4)/8⌋04×204×2W2,((i−4)mod8)]Table 6.3.1.5-33: Intermediate precoding matrix W 'for codebook2and five-layer transmission using eight antenna ports with transform precoding disabled. TPMI index iIntermediate precoder matrix W '0 – 31 1√2[W2,⌊i/4⌋04×304×2W3,(imod4)]Table 6.3.1.5-34: Intermediate precoding matrix W 'for codebook2and six-layer transmission using eight antenna ports with transform precoding disabled. TPMI index iIntermediate precoder matrix W '0 – 151√2[W3,⌊i/4⌋04×304×3W3,(imod4)]Table 6.3.1.5-35: Intermediate precoding matrix W 'for codebook2and seven-layer transmission using eight antenna ports with transform precoding disabled. TPMI index iIntermediate precoder matrix W '0 – 71√2[W3,⌊i/2⌋04×404×3W4,(imod2)]Table 6.3.1.5-36: Intermediate precoding matrix W 'for codebook2and eight-layer transmission using eight antenna ports with transform precoding disabled. TPMI index iIntermediate precoder matrix W '0 – 31√2[W4,⌊i/2⌋04×404×4W4,(imod2)]Table 6.3.1.5-37: Submatrices W1,ifor codebook3and used in Tables 6.3.1.5-39 to 6.3.1.5-45.iW1,i(ordered from left to right in increasing order of i)0 – 31√2[11]1√2[1−1]1√2[1j]1√2[1−j]3GPP TS 38.211 V18.4.0 (2024-09)63(Release 18)
3GPPTable 6.3.1.5-38: Submatrices W2,ifor codebook3and used in Tables 6.3.1.5-40 to 6.3.1.5-46.iW2,i(ordered from left to right in increasing order of i)0 – 112[111−1]12[1j1−j]Table 6.3.1.5-39: Intermediate precoding matrix W 'for codebook3and single-layer transmission using eight antenna ports. TPMI index iIntermediate precoder matrix W '0 – 312[W1,i02×102×102×1]4 – 712[02×1W1,(i−4)02×102×1]8 – 1112[02×102×1W1,(i−8)02×1]12 – 1512[02×102×102×1W1,(i−12)]1612√2[11111111]3GPP TS 38.211 V18.4.0 (2024-09)64(Release 18)
3GPPTable 6.3.1.5-40: Intermediate precoding matrix W 'for codebook3and two-layer transmission using eight antenna ports with transform precoding disabled. TPMI index iIntermediate precoder matrix W '0 – 112[W2,i02×202×202×2]2 – 312[02×2W2,(i−2)02×202×2]4 – 512[02×202×2W2,(i−4)02×2]6 – 7 12[02×202×202×2W2,(i−6)]8 – 2312[W1,⌊(i−8)/4⌋02×102×1W1,(imod4)02×102×102×102×1]24 – 3912[W1,⌊(i−24)/4⌋02×102×102×102×1W1,(imod4)02×102×1]40 – 5512[W1,⌊(i−40)/4⌋02×102×102×102×102×102×1W1,(imod4)]56 – 7112[02×102×1W1,⌊(i−56)/4⌋02×102×1W1,(imod4)02×102×1]72 – 8712[02×102×1W1,⌊(i−72)/4⌋02×102×102×102×1W1,(imod4)]1[02×102×100]3GPP TS 38.211 V18.4.0 (2024-09)65(Release 18)
3GPPTable 6.3.1.5-42: Intermediate precoding matrix W 'for codebook3and four-layer transmission using eight antenna ports with transform precoding disabled. TPMI index iIntermediate precoder matrix W '0 – 25512[W1,⌊i/64⌋02×102×102×102×1W1,⌊(imod 64)/16⌋02×102×102×102×1W1,⌊(imod16)/4⌋02×102×102×102×1W1,(imod4)]256 – 25912[W2,⌊(i−256)/2⌋02×202×2W2,(imod2)02×202×202×202×2]260 – 26312[W2,⌊(i−260)/2⌋02×202×202×202×2W2,(imod2)02×202×2]264 – 26712[W2,⌊(i−264)/2⌋02×202×202×202×202×202×2W2,(imod2)]268 – 27112[02×202×2W2,⌊(i−268)/2⌋02×202×2W2,(imod2)02×202×2]272 – 27512[02×202×2W2,⌊(i−272)/2⌋02×202×202×202×2W2,(imod2)]276 – 27912[02×202×202×202×2W2,⌊(i−276)/2⌋02×202×2W2,(imod2)]3GPP TS 38.211 V18.4.0 (2024-09)69(Release 18)
3GPPTable 6.3.1.5-43: Intermediate precoding matrix W 'for codebook3and five-layer transmission using eight antenna ports with transform precoding disabled. TPMI index iIntermediate precoder matrix W '0 – 1512[W2,⌊i/8⌋02×202×102×202×202×102×2W2,⌊(imod8)/4⌋02×102×202×2W1,(imod4)]16 – 31 12[02×202×202×1W2,⌊(i−16)/8⌋02×202×102×2W2,⌊(imod8)/4⌋02×102×202×2W1,(imod4)]32 – 15912[W1,⌊(i−32)/32⌋02×102×202×102×1W1,⌊(imod32)/8⌋02×202×102×102×1W2,⌊(imod8)/4⌋02×102×102×102×2W1,(imod4)]Table 6.3.1.5-44: Intermediate precoding matrix W 'for codebook3and six-layer transmission using eight antenna ports with transform precoding disabled. TPMI index iIntermediate precoder matrix W '0 – 712[W2,⌊i/4⌋02×202×202×2W2,⌊(imod4)/2⌋02×202×202×2W2,(imod2)02×202×202×2]8 – 1512[W2,⌊(i−8)/4⌋02×202×202×202×202×202×2W2,⌊(imod4)/2⌋02×202×202×2W2,(imod2)]16 – 79 12[W2,⌊(i−16)/32⌋02×102×202×102×2W1,⌊((i−16)mod32)/8⌋02×202×102×202×1W2,⌊(imod8)/4⌋02×102×202×102×2W1,(imodTable 6.3.1.5-45: Intermediate precoding matrix W 'for codebook3and seven-layer transmission using eight antenna ports with transform precoding disabled. TPMI index iIntermediate precoder matrix W '0 – 3112[W2,⌊i/16⌋02×102×202×202×2W1,⌊(imod16)/4⌋02×202×202×202×1W2,⌊(imod4)/2⌋02×202×202×102×2W2,(imod2)]3GPP TS 38.211 V18.4.0 (2024-09)70(Release 18)
3GPPTable 6.3.1.5-46: Intermediate precoding matrix W 'for codebook3and eight-layer transmission using eight antenna ports with transform precoding disabled. TPMI index iIntermediate precoder matrix W '0 – 1512[W2,⌊i/8⌋02×202×202×202×2W2,⌊(imod8)/4⌋02×202×202×202×2W2,⌊(imod4)/2⌋02×202×202×202×2W2,(imod2)]3GPP TS 38.211 V18.4.0 (2024-09)71(Release 18)
3GPPTable 6.3.1.5-47: Intermediate precoding matrix W 'for codebook4and transmission using eight antenna ports. Up to 8 layers are supported with transform precoding disabled and up to one layer with transform precoding enabled.TPMI indexIntermediate precoder matrix W '0 – Δ(ν)−1W '=12√2[ep0…epν−1]where column iof W ', denoted ei, has an element 1 on the row corresponding to the port pion which layer iis to be transmitted, and element 0 in all other rows, pi<pi+1,L=∑p=07δ(p)2p, where δ(p)=1if a layer is to be transmitted on port pand δ(p)=0otherwise, and Δ(z)=∑k=1zC(8,k)for z≥1, where C(x , y)is defined by Table 5.2.2.2.5-4 of [6, TS 38.214]. TPMI indices 0to Δ(ν)−1are mapped to values of L, first by increasing values of the number of transmitted layers, and then by increasing values of Lfor a given number of layers.25512√2[11111111]25612√2[1100110000110011]25712√2[100100010001100100010001]25812√2[100001000010000110000100]3GPP TS 38.211 V18.4.0 (2024-09)72(Release 18)
3GPP6.3.1.6Mapping to virtual resource blocksFor each of the antenna ports used for transmission of the PUSCH, the block of complex-valued symbols z(p)(0),..., z(p)(Msymbap−1)shall be multiplied with the amplitude scaling factor βPUSCHin order to conform to the transmit power specified in [5, TS 38.213] and mapped in sequence starting with z(p)(0)to resource elements (k ' ,l)p, μin the virtual resource blocks assigned for transmission which meet all of the following criteria: -they are in the virtual resource blocks assigned for transmission, and-the corresponding resource elements in the corresponding physical resource blocks are not used for transmission of the associated DM-RS, PT-RS, or DM-RS intended for other co-scheduled UEs as described in clause 6.4.1.1.3The mapping to resource elements (k ' ,l)p, μallocated for PUSCH according to [6, TS 38.214] shall be in increasing order of first the index k 'over the assigned virtual resource blocks, where k'=0is the first subcarrier in the lowest-numbered virtual resource block assigned for transmission, and then the index l, with the starting position given by [6, TS 38.214]. 6.3.1.7Mapping from virtual to physical resource blocksVirtual resource blocks shall be mapped to physical resource blocks according to non-interleaved mapping.For non-interleaved VRB-to-PRB mapping for uplink resource allocation types 0 and 1 [6, TS 38.214], virtual resource block nis mapped to physical resource block nexcept for PUSCH scheduled by RAR UL grant or PUSCH scheduled by DCI format 0_0 with CRC scrambled by TC-RNTI in active uplink bandwidth part istarting at NBWP,istart, including all resource blocks of the initial uplink bandwidth part starting at NBWP,0start, and having the same subcarrier spacing and cyclic prefix as the initial uplink bandwidth part, in which case virtual resource block nis mapped to physical resource block n+NBWP,0start−NBWP,istart. For non-interleaved VRB-to-PRB mapping for uplink resource allocation type 2 [6, TS 38.214], virtual resource block nis mapped to physical resource block n.6.3.2Physical uplink control channel6.3.2.1GeneralThe physical uplink control channel supports multiple formats as shown in Table 6.3.2.1-1. In case intra-slot frequency hopping is configured for PUCCH formats 1, 3, or 4 according to clause 9.2.1 of [5, TS38.213], the number of symbols in the first hop is given by ⌊NsymbPUCCH/2⌋where NsymbPUCCHis the length of the PUCCH transmission in OFDM symbols.Table 6.3.2.1-1: PUCCH formats.PUCCH formatLength in OFDM symbols NsymbPUCCHNumber of bits01 – 2≤214 – 14≤221 – 2>234 – 14>244 – 14>23GPP TS 38.211 V18.4.0 (2024-09)73(Release 18)
3GPP6.3.2.2Sequence and cyclic shift hoppingPUCCH formats 0, 1, 3, and 4 use sequences ru,v(α ,δ)(n)given by clause 5.2.2 with δ=0where the sequence group uand the sequence number vdepend on the sequence hopping in clause 6.3.2.2.1 and the cyclic shift αdepends on the cyclic shift hopping in clause 6.3.2.2.2.6.3.2.2.1Group and sequence hoppingThe sequence group u=(fgh+fss)mod30and the sequence number vwithin the group depends on the higher-layer parameter pucch-GroupHopping:-if pucch-GroupHoppingequals 'neither'fgh=0fss=nIDmod30v=0where nIDis given by the higher-layer parameter hoppingId if configured, otherwise nID=NIDcell.-if pucch-GroupHoppingequals 'enable' where the pseudo-random sequence c(i)is defined by clause 5.2.1 and shall be initialized at the beginning of each radio frame with cinit=⌊nID/30⌋where nIDis given by the higher-layer parameter hoppingId if configured, otherwise nID=NIDcell.-if pucch-GroupHoppingequals 'disable'where the pseudo-random sequence c(i)is defined by clause 5.2.1 and shall be initialized at the beginning of each radio frame with cinit=25⌊nID/30⌋+(nIDmod 30)where nIDis given by the higher-layer parameter hoppingId if configured, otherwise nID=NIDcell.The frequency hopping index nhop=0if intra-slot frequency hopping is disabled by the higher-layer parameter intraSlotFrequencyHopping. If frequency hopping is enabled by the higher-layer parameter intraSlotFrequencyHopping, hop0nfor the first hop and hop1nfor the second hop.6.3.2.2.2Cyclic shift hoppingThe cyclic shift αvaries as a function of the symbol and slot number according toαl=2πNscRB((m0+mcs+mint+ncs(ns,fμ,l+l'))mod NscRB)where-ns,fμis the slot number in the radio frame3GPP TS 38.211 V18.4.0 (2024-09)74(Release 18)
3GPP-lis the OFDM symbol number in the PUCCH transmission where l=0corresponds to the first OFDM symbol of the PUCCH transmission,-l'is the index of the OFDM symbol in the slot that corresponds to the first OFDM symbol of the PUCCH transmission in the slot given by [5, TS 38.213]-m0is given by [5, TS 38.213] for PUCCH format 0 and 1 while for PUCCH format 3 and 4 is defined in clause 6.4.1.3.3.1-mcs=0except for PUCCH format 0 when it depends on the information to be transmitted according to clause 9.2 of [5, TS 38.213]. -mintis given by-mint=5nIRBμfor PUCCH formats 0 and 1 if PUCCH shall use interlaced mapping according to any of the higher-layer parameters useInterlacePUCCH-PUSCHin BWP-UplinkCommonor useInterlacePUCCH-PUSCHin BWP-UplinkDedicated, where nIRBμis the resource block number within the interlace;-mint=0otherwiseThe function ncs(nc,l)is given byncs(ns,fμ,l)=∑m=072mc(8Nsymbslotns,fμ+8l+m)where the pseudo-random sequence c(i)is defined by clause 5.2.1. The pseudo-random sequence generator shall be initialized with cinit=nID,where nIDis given by the higher-layer parameter hoppingId if configured, otherwise nID=NIDcell.6.3.2.3PUCCH format 06.3.2.3.1Sequence generationThe sequence x(n)shall be generated according tox(l MRBPUCCH,0NscRB+n)=ru,v(α ,δ)(n)n=0,1,…, MRBPUCCH,0NscRB−1l={0for single-symbol PUCCH transmission0,1for double-symbol PUCCH transmissionwhere ru,v(α ,δ)(n)is given by clause 6.3.2.2 with mcsdepending on the information to be transmitted according to clause 9.2 of [5, TS 38.213]. The quantity MRBPUCCH,0is given by clause 9.2.1 of [5, TS 38.213].6.3.2.3.2Mapping to physical resourcesThe sequence x(n)shall be multiplied with the amplitude scaling factor βPUCCH,0in order to conform to the transmit power specified in [5, TS 38.213] and mapped in sequence starting with x(0)to resource elements (k ,l)p, μassigned for transmission according to clause 9.2.1 of [5, TS 38.213] in increasing order of first the index kover the assigned physical resources spanning MRBPUCCH,0resource blocks, and then the index lon antenna port p=2000. For interlaced transmission, the mapping operation shall be repeated for each resource block in the interlace and in the active bandwidth part over the assigned physical resource blocks according to clause 9.2.1 of [5, TS 38.213], with the resource-block dependent sequence generated according to clause 6.3.2.2.3GPP TS 38.211 V18.4.0 (2024-09)75(Release 18)
3GPP6.3.2.4PUCCH format 16.3.2.4.1Sequence modulationThe block of bits b(0),...,b(Mbit−1)shall be modulated as described in clause 5.1 using BPSK if Mbit=1and QPSK if Mbit=2, resulting in a complex-valued symbol d(0). The complex-valued symbol d(0)shall be multiplied with a sequence ru,v(α ,δ)(n)according toy(n)=d(0)ru,v(α ,δ)(n)n=0,1,…, MRBPUCCH,1NscRB−1where ru,v(α ,δ)(n)is given by clause 6.3.2.2. The quantity MRBPUCCH,1is given by clause 9.2.1 of [5, TS 38.213].The block of complex-valued symbols y(0),…, y(MRBPUCCH,1NscRB−1)shall be block-wise spread with the orthogonal sequence wi(m)according toz(m'MRBPUCCH,1NscRBNSF,0PUCCH,1+m MRBPUCCH,1NscRB+n)=wi(m)y(n)n=0,1,…, MRBPUCCH,1NscRB−1m=0,1,…, NSF,m'PUCCH,1−1m'={0no intra-slot frequency hopping0,1intra-slot frequency hoppingwhere NSF,m'PUCCH,1is given by Table 6.3.2.4.1-1. Intra-slot frequency hopping shall be assumed when the higher-layer parameter intraSlotFrequencyHoppingis provided, regardless of whether the frequency-hop distance is zero or not, and interlaced mapping is not enabled, otherwise no intra-slot frequency hopping shall be assumed.The orthogonal sequence wi(m)is given by Table 6.3.2.4.1-2 where iis the index of the orthogonal sequence to use according to clause 9.2.1 of [5, TS 38.213]. In case of a PUCCH transmission spanning multiple slots according to clause 9.2.6 of [5, TS38.213], the complex-valued symbol d(0)is repeated for the subsequent slots.Table 6.3.2.4.1-1: Number of PUCCH symbols and the corresponding NSF, {m'PUCCH,1¿.PUCCH length, NsymbPUCCH,1NSF, {m'PUCCH,1¿No intra-slot hoppingm'=0Intra-slot hoppingm'=0m'=142115211631273128422942210523115231263313633147343GPP TS 38.211 V18.4.0 (2024-09)76(Release 18)
3GPPTable 6.3.2.4.1-2: Orthogonal sequences for PUCCH format 1. NSF, {m'PUCCH,1¿ϕi=0i=1i=2i=3i=4i=5i=61[0]------2[0 0][0 1]-----3[0 0 0][0 1 2][0 2 1]----4[0 0 0 0][0 2 0 2][0 0 2 2][0 2 2 0]---5[0 0 0 0 0][0 1 2 3 4][0 2 4 1 3][0 3 1 4 2][0 4 3 2 1]--6[0 0 0 0 0 0][0 1 2 3 4 5][0 2 4 0 2 4][0 3 0 3 0 3][0 4 2 0 4 2][0 5 4 3 2 1]-7[0 0 0 0 0 0 0][0 1 2 3 4 5 6][0 2 4 6 1 3 5][0 3 6 2 5 1 4][0 4 1 5 2 6 3][0 5 3 1 6 4 2][0 6 5 4 3 2 1]6.3.2.4.2Mapping to physical resourcesThe sequence z(n)shall be multiplied with the amplitude scaling factor βPUCCH,1in order to conform to the transmit power specified in [5, TS 38.213] and mapped in sequence starting with z(n)to resource elements (k ,l)p, μwhich meet all of the following criteria: -they are in the resource blocks assigned for transmission,-they are not used by the associated DM-RS The mapping to resource elements (k ,l)p, μnot reserved for other purposes shall be in increasing order of first the index kover the assigned physical resource blocks according to clause 9.2.1 of [5, TS 38.213], and then the index lon antenna port p=2000. For interlaced transmission, the mapping operation shall be repeated for each resource block in the interlace and in the active bandwidth part over the assigned physical resource blocks according to clause 9.2.1 of [5, TS 38.213], with the resource-block dependent sequence generated according to clause 6.3.2.2.6.3.2.5PUCCH format 26.3.2.5.1ScramblingThe block of bits b(0),…,b(Mbit−1), where Mbitis the number of bits transmitted on the physical channel, shall be scrambled prior to modulation, resulting in a block of scrambled bits ~b(0),…,~b(Mbit−1)according to the following pseudo codeSet i= 0while i<Mbitif b(i)=y// UCI placeholder bits~b(i)=~b(i−1)else~b(i)=(b(i)+c(i))mod 2end if i= i+ 1end whilewhere y is the tag defined in [4, TS38.212] and the scrambling sequence c(i)is given by clause 5.2.1. The scrambling sequence generator shall be initialized with 3GPP TS 38.211 V18.4.0 (2024-09)77(Release 18)
3GPPcinit=nRNTI∙215+nIDwhere-nID∈{0,1,…,1023}equals the higher-layer parameter dataScramblingIdentityPUSCHif configured,-nID=NIDcellotherwiseand nRNTIis given by the C-RNTI.6.3.2.5.2ModulationThe block of scrambled bits ~b(0),…,~b(Mbit−1)shall be modulated as described in clause 5.1 using QPSK, resulting in a block of complex-valued modulation symbols d(0),…,d(Msymb−1)where Msymb=Mbit/2. 6.3.2.5.2ASpreadingSpreading shall be applied according toz(m NSFPUCCH,2+i)=wn(i)d(m)i=0,1,…, NSFPUCCH,2−1m=0,1,…, Msymb−1resulting in a block of complex-valued symbols z(0),…, z(NSFPUCCH,2Msymb−1).If the higher layer parameter interlace1is not configured, and the higher-layer parameter occ-Lengthis configured,-NSFPUCCH,2∈{2,4}is given by the higher-layer parameter occ-Length; -wn(i)is given by Tables 6.3.2.5A-1 and 6.3.2.5A-2 where n=(n0+nIRB)modNSFPUCCH,2, the quantity n0is the index of the orthogonal sequence to use given by the higher-layer parameter occ-Index, and nIRBis the interlaced resource block number as defined in clause 4.4.4.6 within the interlace given by the higher-layer parameter Interlace0.otherwise NSFPUCCH,2=1and wn(i)=1.Table 6.3.2.5A-1: Orthogonal sequences wn(i)for PUCCH format 2 when NSFPUCCH,2=2.nwn(i)0[+1+1]1[+1−1]Table 6.3.2.5A-2: Orthogonal sequences wn(i)for PUCCH format 2 when NSFPUCCH,2=4.nwn(i)0[+1+1+1+1]1[+1−1+1−1]2[+1+1−1−1]3[+1−1−1+1]6.3.2.5.3Mapping to physical resourcesThe block of complex-valued symbols z(0),…, z(NSFPUCCH,2Msymb−1)shall be multiplied with the amplitude scaling factor βPUCCH,2in order to conform to the transmit power specified in [5, TS 38.213] and mapped in sequence starting with z(0)to resource elements (k ,l)p, μwhich meet all of the following criteria: 3GPP TS 38.211 V18.4.0 (2024-09)78(Release 18)
3GPP-they are in the resource blocks assigned for transmission,-they are not used by the associated DM-RS. The mapping to resource elements (k ,l)p, μnot reserved for other purposes shall be in increasing order of first the index kover the assigned physical resource blocks according to clause 9.2.1 of [5, TS 38.213], and then the index lon antenna port p=2000.6.3.2.6PUCCH formats 3 and 46.3.2.6.1ScramblingThe block of bits b(0),…,b(Mbit−1), where Mbitis the number of bits transmitted on the physical channel, shall be scrambled prior to modulation, resulting in a block of scrambled bits ~b(0),…,~b(Mbit−1)according to the following pseudo codeSet i= 0while i<Mbitif b(i)=y// UCI placeholder bits~b(i)=~b(i−1)else~b(i)=(b(i)+c(i))mod 2end if i= i+ 1end whilewhere y is the tag defined in [4, TS38.212] and the scrambling sequence c(i)is given by clause 5.2.1. The scrambling sequence generator shall be initialized with cinit=nRNTI∙215+nIDwhere-nID∈{0,1,…,1023}equals the higher-layer parameter dataScramblingIdentityPUSCHif configured,-nID=NIDcellotherwiseand nRNTIis given by the C-RNTI.6.3.2.6.2ModulationThe block of scrambled bits ~b(0),…,~b(Mbit−1)shall be modulated as described in clause 5.1 using QPSK unless π/2-BPSK is configured, resulting in a block of complex-valued modulation symbols d(0),…,d(Msymb−1)where Msymb=Mbit/2for QPSK and Msymb=Mbitfor π/2-BPSK. 6.3.2.6.3Block-wise spreadingFor both PUCCH format 3 and 4, MscPUCCH,s=MRBPUCCH,sNscRBwith MRBPUCCH,srepresenting the bandwidth of the PUCCH in terms of resource blocks according to clauses 9.2.3, 9.2.5.1 and 9.2.5.2 of [5, TS 38.213] and shall for non-interlaced mapping fulfil3GPP TS 38.211 V18.4.0 (2024-09)79(Release 18)
3GPPMRBPUCCH,s=2α2∙3α3∙5α5where α2,α3,α5is a set of non-negative integers and s∈{3,4}. For interlaced mapping, MRBPUCCH,3=10if a single interlace is configured and MRBPUCCH,3=20if two interlaces are configured.For PUCCH format 3, if interlaced mapping is not configured, no block-wise spreading is applied andy(lMscPUCCH,3+k)=d(lMscPUCCH,3+k)k=0,1,..., MscPUCCH,3−1l=0,1,...,(Msymb/MscPUCCH,3)−1where MRBPUCCH,3≥1is given by clauses 9.2.3, 9.2.5.1 and 9.2.5.2 of [5, TS 38.213] and NSFPUCCH,3=1.For PUCCH format 3 with interlaced mapping and PUCCH format 4, block-wise spreading shall be applied according to y(l MscPUCCH,s+k)=wn(⌊kNSFPUCCH,sMscPUCCH,s⌋)d(lMscPUCCH,sNSFPUCCH,s+kmod MscPUCCH,sNSFPUCCH,s)k=0,1,…, MscPUCCH,s−1l=0,1,…,(NSFPUCCH,sMsymb/MscPUCCH,s)−1where -for PUCCH format 3 with interlaced mapping, NSFPUCCH,3∈{1,2,4}if a single interlace is configured and NSFPUCCH,3=1, wn=1if two interlaces are configured;-for PUCCH format 4,MRBPUCCH ,4is givenby clause9.2.1of[5,TS38.213]∧¿NSFPUCCH,4∈{2,4}is given by the higher-layer parameter occ-Length;and wnis given by Tables 6.3.2.6.3-1 and 6.3.2.6.3-2 for NSFPUCCH,s>1where nis the index of the orthogonal sequence to use according to clause 9.2.1 of [5, TS 38.213]. The quantity NSFPUCCH,3∈{2,4}is given by the higher-layer parameter occ-Lengthif provided, otherwise NSFPUCCH,3=1.Table 6.3.2.6.3-1: Orthogonal sequences wn(m)for PUCCH format 3 with interlaced mapping and PUCCH format 4 when NSFPUCCH,s=2.nwn0[+1+1]1[+1−1]Table 6.3.2.6.3-2: Orthogonal sequences wn(m)for PUCCH format 3 with interlaced mapping and PUCCH format 4 when NSFPUCCH,s=4.nwn0[+1+1+1+1]1[+1−j−1+j]2[+1−1+1−1]3[+1+j−1−j]3GPP TS 38.211 V18.4.0 (2024-09)80(Release 18)
3GPP6.3.2.6.4Transform precodingThe block of complex-valued symbols y(0),…, y(NSFPUCCH,sMsymb−1)shall be transform precoded according toz(l⋅MscPUCCH,s+k)=1√MscPUCCH,s∑m=0MscPUCCH,s−1y(l⋅MscPUCCH,s+m)e−j2π mkMscPUCCH,sk=0,..., MscPUCCH,s−1l=0,...,(NSFPUCCH,sMsymb/MscPUCCH,s)−1resulting in a block of complex-valued symbols z(0),…, z(NSFPUCCH,sMsymb−1). 6.3.2.6.5Mapping to physical resourcesThe block of modulation symbols z(0),…, z(NSFPUCCH,sMsymb−1)shall be multiplied with the amplitude scaling factor βPUCCH,sin order to conform to the transmit power specified in [5, TS 38.213] and mapped in sequence starting with z(0)to resource elements (k ,l)p, μwhich meet all of the following criteria: -they are in the resource blocks assigned for transmission,-they are not used by the associated DM-RSThe mapping to resource elements (k ,l)p, μnot reserved for other purposes shall be in increasing order of first the index kover the assigned physical resource blocks according to clause 9.2.1 of [5, TS 38.213], and then the index lon antenna port p=2000. In case of intra-slot frequency hopping according to clause 9.2.1 of [5, TS 38.213], ⌊NsymbPUCCH,s/2⌋OFDM symbols shall be transmitted in the first hop and NsymbPUCCH,s−⌊NsymbPUCCH,s/2⌋symbols in the second hop where NsymbPUCCH,sis the total number of OFDM symbols used in one slot for PUCCH transmission.6.3.3Physical random-access channel6.3.3.1Sequence generationThe set of random-access preambles xu,v(n)shall be generated according toxu,v(n)=xu((n+Cv)modLRA)xu(i)=e−jπ ui(i+1)LRA,i=0,1,..., LRA−1from which the frequency-domain representation shall be generated according toyu,v(n)=∑m=0LRA−1xu,v(m)⋅e−j2π mnLRAwhere LRA=839, LRA=139, LRA=1151, or LRA=571depending on the PRACH preamble format as given by Tables 6.3.3.1-1 and 6.3.3.1-2.There are 64 preambles defined in each time-frequency PRACH occasion, enumerated in increasing order of first increasing cyclic shift Cvof a logical root sequence, and then in increasing order of the logical root sequence index, starting with the index obtained from the higher-layer parameter prach-RootSequenceIndexor rootSequenceIndex-BFR or by msgA-PRACH-RootSequenceIndexif configured and a type-2 random-access procedure is initiated as described in 3GPP TS 38.211 V18.4.0 (2024-09)81(Release 18)
3GPPclause 8.1 of [5, TS 38.213]. Additional preamble sequences, in case 64 preambles cannot be generated from a single root Zadoff-Chu sequence, are obtained from the root sequences with the consecutive logical indexes until all the 64 sequences are found. The logical root sequence order is cyclic; the logical index 0 is consecutive to LRA−2. The sequence number uis obtained from the logical root sequence index according to Tables 6.3.3.1-3 to 6.3.3.1-4B.The cyclic shift Cvis given byCv={vNCSv=0,1,...,⌊LRA/NCS⌋−1, NCS≠0for unrestricted sets0NCS=0for unrestricted setsdstart⌊v/nshiftRA⌋+(vmodnshiftRA)NCSv=0,1,...,w−1for restricted sets type A and B¯¯dstart+(v−w)NCSv=w ,...,w+¯¯nshiftRA−1for restricted sets type B¯¯¯dstart+(v−w−¯¯nshiftRA)NCSv=w+¯¯nshiftRA,...,w+¯¯nshiftRA+¯¯¯nshiftRA−1for restricted sets type Bw=nshiftRAngroupRA+¯nshiftRAwhere NCSis given by Tables 6.3.3.1-5 to 6.3.3.1-7. The type of restricted sets (unrestricted, restricted type A, restricted type B) is given by-the higher-layer parameter msgA-RestrictedSetConfig, if provided;-or the higher-layer parameter ltm-RestrictedSetConfig associated with a candidate cell indicated in Cell indicator field of a PDCCH order, if provided;-otherwise, the higher-layer parameter restrictedSetConfig.Tables 6.3.3.1-1 and 6.3.3.1-2 indicate the type of restricted sets supported for the different preamble formats. The variable duis given bydu={q0≤q<LRA/2LRA−qotherwisewhere qis the smallest non-negative integer that fulfils (qu)modLRA=1. The parameters for restricted sets of cyclic shifts depend on du. For restricted set type A, the parameters are given by:-for NCS≤du<LRA/3nshiftRA=⌊du/NCS⌋dstart=2du+nshiftRANCSngroupRA=⌊LRA/dstart⌋¯nshiftRA=max(⌊(LRA−2du−ngroupRAdstart)/NCS⌋,0)-for LRA/3≤du≤(LRA−NCS)/2nshiftRA=⌊(LRA−2du)/NCS⌋dstart=LRA−2du+nshiftRANCSngroupRA=⌊du/dstart⌋¯nshiftRA=min(max(⌊(du−ngroupRAdstart)/NCS⌋,0),nshiftRA)For restricted set type B, the parameters are given by:-for NCS≤du<LRA/53GPP TS 38.211 V18.4.0 (2024-09)82(Release 18)
3GPPnshiftRA=⌊(3du−LRA)/NCS⌋dstart=3du−LRA+nshiftRANCS¯¯dstart=0¯¯¯dstart=0ngroupRA=⌊du/dstart⌋¯nshiftRA=max(⌊(LRA−2du−ngroupRAdstart)/NCS⌋,0)¯¯nshiftRA=0¯¯¯nshiftRA=0-for 2LRA/5≤du≤(LRA−NCS)/2nshiftRA=⌊(LRA−2du)/NCS⌋dstart=2(LRA−2du)+nshiftRANCS¯¯dstart=0¯¯¯dstart=0ngroupRA=⌊(LRA−du)/dstart⌋¯nshiftRA=max(⌊(3du−LRA−ngroupRAdstart)/NCS⌋,0)¯¯nshiftRA=0¯¯¯nshiftRA=0For all other values of du, there are no cyclic shifts in the restricted set.Table 6.3.3.1-1: PRACH preamble formats for LRA=839and Δ fRA∈{1.25,5}kHz.FormatLRAΔ fRANuNCPRASupport for restricted sets08391.25 kHz24576κ3168κType A, Type B18391.25 kHz2⋅24576κ21024κType A, Type B28391.25 kHz4⋅24576κ4688κType A, Type B38395 kHz4⋅6144κ3168κType A, Type BTable 6.3.3.1-2: Preamble formats for LRA∈{139,571,1151}and Δ fRA=15⋅2μkHz where μ∈{0,1,2,3,5,6}.FormatLRAΔ fRANuNCPRASupport for restricted setsμ∈{0,1,2,3,μ∈{0,μ∈{1,3A1139115157115⋅2μkHz2⋅2048κ⋅2−μ288κ⋅2−μ-A2139115157115⋅2μkHz4⋅2048κ⋅2−μ576κ⋅2−μ-A3139115157115⋅2μkHz6⋅2048κ⋅2−μ864κ⋅2−μ-B1139115157115⋅2μkHz2⋅2048κ⋅2−μ216κ⋅2−μ-B2139115157115⋅2μkHz4⋅2048κ⋅2−μ360κ⋅2−μ-B3139115157115⋅2μkHz6⋅2048κ⋅2−μ504κ⋅2−μ-B4139115157115⋅2μkHz12⋅2048κ⋅2−μ936κ⋅2−μ-C0139115157115⋅2μkHz2048κ⋅2−μ1240κ⋅2−μ-C2139115157115⋅2μkHz4⋅2048κ⋅2−μ2048κ⋅2−μ3GPP TS 38.211 V18.4.0 (2024-09)84(Release 18)
3GPPTable 6.3.3.1-4A: Mapping from logical indexito sequence number ufor preamble formats with LRA=1151.iSequence number uin increasing order of i0-1911150211493114841147511466114571144811439114210114120-3911114012113913113814113715113616113517113418113319113220113140-5921113022112923112824112725112626112527112428112329112230112160-7931112032111933111834111735111636111537111438111339111240111180-99411110421109431108441107451106461105471104481103491102501101100-119511100521099531098541097551096561095571094581093591092601091120-139611090621089631088641087651086661085671084681083691082701081140-159711080721079731078741077751076761075771074781073791072801071160-179811070821069831068841067851066861065871064881063891062901061180-1999110609210599310589410579510569610559710549810539910521001051200-2191011050102104910310481041047105104610610451071044108104310910421101041220-2391111040112103911310381141037115103611610351171034118103311910321201031240-2591211030122102912310281241027125102612610251271024128102312910221301021260-2791311020132101913310181341017135101613610151371014138101313910121401011280-2991411010142100914310081441007145100614610051471004148100314910021501001300-3191511000152999153998154997155996156995157994158993159992160991320-339161990162989163988164987165986166985167984168983169982170981340-359171980172979173978174977175976176975177974178973179972180971360-379181970182969183968184967185966186965187964188963189962190961380-399191960192959193958194957195956196955197954198953199952200951400-419201950202949203948204947205946206945207944208943209942210941420-439211940212939213938214937215936216935217934218933219932220931440-459221930222929223928224927225926226925227924228923229922230921460-479231920232919233918234917235916236915237914238913239912240911480-499241910242909243908244907245906246905247904248903249902250901500-519251900252899253898254897255896256895257894258893259892260891520-539261890262889263888264887265886266885267884268883269882270881540-559271880272879273878274877275876276875277874278873279872280871560-579281870282869283868284867285866286865287864288863289862290861580-599291860292859293858294857295856296855297854298853299852300851600-619301850302849303848304847305846306845307844308843309842310841620-639311840312839313838314837315836316835317834318833319832320831640-659321830322829323828324827325826326825327824328823329822330821660-679331820332819333818334817335816336815337814338813339812340811680-699341810342809343808344807345806346805347804348803349802350801700-719351800352799353798354797355796356795357794358793359792360791720-739361790362789363788364787365786366785367784368783369782370781740-759371780372779373778374777375776376775377774378773379772380771760-779381770382769383768384767385766386765387764388763389762390761780-799391760392759393758394757395756396755397754398753399752400751800-819401750402749403748404747405746406745407744408743409742410741820-839411740412739413738414737415736416735417734418733419732420731840-859421730422729423728424727425726426725427724428723429722430721860-879431720432719433718434717435716436715437714438713439712440711880-899441710442709443708444707445706446705447704448703449702450701900-919451700452699453698454697455696456695457694458693459692460691920-939461690462689463688464687465686466685467684468683469682470681940-959471680472679473678474677475676476675477674478673479672480671960-979481670482669483668484667485666486665487664488663489662490661980-9994916604926594936584946574956564966554976544986534996525006511000-10195016505026495036485046475056465066455076445086435096425106411020-10395116405126395136385146375156365166355176345186335196325206311040-10595216305226295236285246275256265266255276245286235296225306211060-10795316205326195336185346175356165366155376145386135396125406111080-10995416105426095436085446075456065466055476045486035496025506011100-11195516005525995535985545975555965565955575945585935595925605911120-11395615905625895635885645875655865665855675845685835695825705811140-1149571580572579573578574577575576----------3GPP TS 38.211 V18.4.0 (2024-09)86(Release 18)
3GPPTable 6.3.3.1-4B: Mapping from logical indexito sequence number ufor preamble formats with LRA=571.iSequence number uin increasing order of i0-191570256935684567556665657564856395621056120-391156012559135581455715556165551755418553195522055140-592155022549235482454725546265452754428543295423054160-793154032539335383453735536365353753438533395324053180-9941530425294352844527455264652547524485234952250521100-11951520525195351854517555165651557514585135951260511120-13961510625096350864507655066650567504685036950270501140-15971500724997349874497754967649577494784937949280491160-17981490824898348884487854868648587484884838948290481180-199914809247993478944779547696475974749847399472100471200-219101470102469103468104467105466106465107464108463109462110461220-239111460112459113458114457115456116455117454118453119452120451240-259121450122449123448124447125446126445127444128443129442130441260-279131440132439133438134437135436136435137434138433139432140431280-299141430142429143428144427145426146425147424148423149422150421300-319151420152419153418154417155416156415157414158413159412160411320-339161410162409163408164407165406166405167404168403169402170401340-359171400172399173398174397175396176395177394178393179392180391360-379181390182389183388184387185386186385187384188383189382190381380-399191380192379193378194377195376196375197374198373199372200371400-419201370202369203368204367205366206365207364208363209362210361420-439211360212359213358214357215356216355217354218353219352220351440-459221350222349223348224347225346226345227344228343229342230341460-479231340232339233338234337235336236335237334238333239332240331480-499241330242329243328244327245326246325247324248323249322250321500-519251320252319253318254317255316256315257314258313259312260311520-539261310262309263308264307265306266305267304268303269302270301540-559271300272299273298274297275296276295277294278293279292280291560-569281290282289283288284287285286----------Table 6.3.3.1-5: NCSfor preamble formats with Δ fRA=1.25kHz.zeroCorrelationZoneConfig, msgA-ZeroCorrelationZoneConfigNCSvalueUnrestricted setRestricted set type ARestricted set type B001515113181821522223182626422323252638386324646738555584668689598282107610010011931281181211915813713167202-14279237-15419--3GPP TS 38.211 V18.4.0 (2024-09)87(Release 18)
3GPPTable 6.3.3.1-6: NCSfor preamble formats with Δ fRA=5kHz.zeroCorrelationZoneConfig, msgA-ZeroCorrelationZoneConfigNCSvalueUnrestricted setRestricted set type ARestricted set type B003636113575722672603338163438896554194686491037175511277864121819761328510931379711119152109121391731221320919513714279216-15419237-Table 6.3.3.1-7: NCSfor preamble formats with LRA∈{139,571,1151}.zeroCorrelationZoneConfig, msgA-ZeroCorrelationZoneConfigNCSvalueLRA=139LRA=571LRA=1151000012817241021361225481530510173561221447132552815316391740821019511041123631271227811641334114230144619038315692855756.3.3.2Mapping to physical resourcesThe preamble sequence shall be mapped to physical resources according toak(p ,RA)=βPRACHyu,v(k)k=0,1,..., LRA−1where βPRACHis an amplitude scaling factor in order to conform to the transmit power specified in [5, TS38.213], and p=4000is the antenna port. Baseband signal generation shall be done according to clause 5.3 using the parameters in Table 6.3.3.1-1 or Table 6.3.3.1-2 with ¯kgiven by Table 6.3.3.2-1.Random access preambles can only be transmitted in the time resources obtained from Tables 6.3.3.2-2 to 6.3.3.2-4 and depends on FR1, FR2, or FR2-NTN and the spectrum type as defined in [8, TS38.104]. The PRACH configuration index in Tables 6.3.3.2-2 to 6.3.3.2-4 is3GPP TS 38.211 V18.4.0 (2024-09)88(Release 18)
3GPP-for Table 6.3.3.2-3 given by the higher-layer parameter prach-ConfigurationIndex,or by msgA-PRACH-ConfigurationIndexif configured; and-for Tables 6.3.3.2-2 and 6.3.3.2-4 given by the higher-layer parameter prach-ConfigurationIndex,or by msgA-PRACH-ConfigurationIndexif configured.For the IAB-MT part of an IAB-node, the following applies:-if the higher-layer parameter prach-ConfigurationPeriodScaling-IABis configured, the variable xused in nfmodx=yof Tables 6.3.3.2-2 to 6.3.3.2-4 shall be replaced by xIAB, where xIAB=δxand δis given by the higher-layer parameter prach-ConfigurationPeriodScaling-IABand the IAB-node does not expect xIABto be larger than 64;-if the higher-layer parameter prach-ConfigurationFrameOffset-IABis configured, the variable yused in nfmodx=yof Tables 6.3.3.2-2 to 6.3.3.2-4 shall be replaced by yIAB=(y+Δ y)mod xwhere Δ yis given by the higher-layer parameter prach-ConfigurationFrameOffset-IAB, and xisthe valueused∈nfmod x=y;-if the higher-layer parameter prach-ConfigurationSOffset-IABis configured, the subframe number snfrom Tables 6.3.3.2-2 to 6.3.3.2-3 and the slot number snfrom Table 6.3.3.2-4 shall be replaced by (sn+Δ s)mod Lwhere Δ s∈{0,1,…, L−1}is given by the higher-layer parameter prach-ConfigurationSOffset-IAB, and Lis the number of subframes in a frame when using Tables 6.3.3.2-2 to 6.3.3.2-3 and the number of slots in a frame for 60 kHz subcarrier spacing when using in Table 6.3.3.2-4.Random access preambles can only be transmitted in the frequency resources given by either the higher-layer parameter msg1-FrequencyStart or msgA-RO-FrequencyStartif configured as described in clause 8.1 of [5 TS 38.213]. The PRACH frequency resources nRA∈{0,1,…, M−1}, where Mequals the higher-layer parameter msg1-FDMor msgA-RO-FDMif configured, are numbered in increasing order within the initial uplink bandwidth part during initial access, starting from the lowest frequency. Otherwise, nRAare numbered in increasing order within the active uplink bandwidth part, starting from the lowest frequency.For operation with shared spectrum channel access, for LRA=139, a UE expects to be provided with higher-layer parameter msg1-FrequencyStart or msgA-RO-FrequencyStartif configured, and higher-layer parameter msg1-FDMor msgA-RO-FDMif configured, such that a random-access preamble is confined within a single RB set. The UE assumes that the RB set is defined as when the UE is not provided intraCellGuardBandsPerSCSfor an UL carrier as described in Clause 7 of [6, TS 38.214].For operation with shared spectrum channel access, for LRA=571or 1151and Type-2 random access, a UE expects to be provided with higher-layer parameter msgA-RO-FDMequals to one.For the purpose of slot numbering in the tables, the following subcarrier spacing shall be assumed:-15 kHz for FR1-60 kHz for FR2 and FR2-NTN.For handover purposes to a target cell in paired or unpaired spectrum where the target cell uses Lmax=4, the UE may assume the absolute value of the time difference between radio frame iin the current cell and radio frameiin the target cell is less than 153600Tsif the association pattern period in clause 8.1 of [5, TS 38.213] is not equal to 10 ms.For inter frequency handover purposes where the source cell is either in paired or unpaired spectrum and the target cell is in unpaired spectrum and uses Lmax=8, the UE may assume the absolute value of the time difference between radio frame iin the current cell and radio frame iin the target cell is less than 76800Ts.3GPP TS 38.211 V18.4.0 (2024-09)89(Release 18)
3GPPTable 6.3.3.2-1: Supported combinations of Δ fRAand Δ f, and the corresponding value of k.LRAΔ fRAfor PRACHΔffor PUSCH, allocation expressed in number of RBs for PUSCH¯k8391.2515678391.2530318391.256021338395152412839530121083956067139151512213915306213915603213930152421393030122139306062139606012213960120621391206024213912012012213912048031139120960223139480120482139480480122139480960621399601209621399604802421399609601225713015962571303048257130602425711201204825711204801215711209607475714801201922571480480482571480960242115115159611151153048111511560241115112012097611511204802523115112096013453GPP TS 38.211 V18.4.0 (2024-09)90(Release 18)
3GPPTable 6.3.3.2-2: Random access configurations for FR1 and paired spectrum/supplementary uplink.PRACHPreamble nfmod x=ySubframe numberStarting Number 3GPP TS 38.211 V18.4.0 (2024-09)91(Release 18)
3GPPConfiguration Indexformatsymbolof PRACH slots within a subframeRA,slottN, number of time-domain PRACH occasions within a PRACH slotRAdurN,PRACH durationxy0016110--01016140--02016170--03016190--0408110--0508140--0608170--0708190--0804110--0904140--01004170--01104190--01202110--01302140--01402170--01502190--01601010--01701040--01801070--0190101,60--0200102,70--0210103,80--0220101,4,70--0230102,5,80--0240103, 6, 90--0250100,2,4,6,80--0260101,3,5,7,90--0270100,1,2,3,4,5,6,7,8,90--028116110--029116140--030116170--031116190--03218110--03318140--03418170--03518190--03614110--03714140--03814170--03914190--04012110--04112140--04212170--04312190--04411010--04511040--04611070--0471101,60--0481102,70--0491103,80--0501101,4,70--0511102,5,80--0521103,6,90--053216110--05428110--05524010--03GPP TS 38.211 V18.4.0 (2024-09)92(Release 18)
3GPPTable 6.3.3.2-3: Random access configurations for FR1 and unpaired spectrum. PRACHPreamblnfmod x=ySubframe numberStarting Number 3GPP TS 38.211 V18.4.0 (2024-09)97(Release 18)
3GPPConfiguration Indexe formatsymbolof PRACH slots within a subframeRA,slottN,number of time-domain PRACH occasions within a PRACH slotRAdurN,PRACH durationxy0016190--0108190--0204190--0302090--0402190--0502040--0602140--0701090--0801080--0901070--01001060--01101050--01201040--01301030--01401020--0150101,600160101,67--0170104,90--0180103,80--0190102,70--0200108,90--0210104,8,90--0220103,4,90--0230107,8,90--0240103,4,8,90--0250106,7,8,90--0260101,4,6,90--0270101,3,5,7,90--028116170--02918170--03014170--03112070--03212170--03311070--034216160--03528160--03624160--03722067--03822167--03921067--040316190--04138190--04234190--04332090--04432190--04532040--04632140--04731090--04831080--04931070--05031060--05131050--05231040--05331030--05431020--0553101,60--03GPP TS 38.211 V18.4.0 (2024-09)98(Release 18)
3GPPTable 6.3.3.2-4: Random access configurations for FR2 and unpaired spectrum, and for FR2-NTN and paired spectrum. PRACHPreamble nfmod x=ySlot numberStarting Number 3GPP TS 38.211 V18.4.0 (2024-09)103(Release 18)
3GPPConfig. Indexformatsymbolof PRACH slots within a 60 kHz slotRA,slottN,number of time-domain PRACH occasions within a PRACH slotRAdurN,PRACH durationxy0A11614,9,14,19,24,29,34,3902621A11613,7,11,15,19,23,27,31,35,390 16 22A181,29,19,29,3902623A1814,9,14,19,24,29,34,3902624A1813,7,11,15,19,23,27,31,35,39016 25A1414,9,14,19,24,29,34,3901626A1414,9,14,19,24,29,34,3902627A1413,7,11,15,19,23,27,31,35,3901628A1217,15,23,31,3902629A1214,9,14,19,24,29,34,39016210A1214,9,14,19,24,29,34,39026211A1213,7,11,15,19,23,27,31,35,39016212A11019,39713213A1103,5,7016214A11024,29,34,39713215A1109,19,29,39723216A11017,19,37,39016217A1109,19,29,3902 6218A1104,9,14,19,24,29,34,39016219A1104,9,14,19,24,29,34,39713220A1103,5,7,9,11,13713221A11023,27,31,35,39713222A1107,15,23,31,39016223A11023,27,31,35,39016224A11013,14,15, 29,30,31,37,38,39723225A1103,7,11,15,19,23,27,31,35,39713226A1103,7,11,15,19,23,27,31,35,39016227A1101,3,5,7,…,37,39016228A1100,1,2,…,39713229A21614,9,14,19,24,29,34,39023430A21613,7,11,15,19,23,27,31,35,390 13431A2814,9,14,19,24,29,34,39023432A2813,7,11,15,19,23,27,31,35,39013 433A281,29,19,29,39023434A2414,9,14,19,24,29,34,39013435A2414,9,14,19,24,29,34,39023436A2413,7,11,15,19,23,27,31,35,39013437A2217,15,23,31,39023438A2214,9,14,19,24,29,34,39013439A2214,9,14,19,24,29,34,39023440A2213,7,11,15,19,23,27,31,35,39013441A21019,39512442A2103,5,7013443A21024,29,34,39512444A2109,19,29,39522445A21017,19,37,39013446A2109, 19, 29, 39023447A2107,15,23,31,39013448A21023,27,31,35,39512449A21023,27,31,35,39013450A2103,5,7,9,11,13512451A2103,5,7,9,11,13013452A2104,9,14,19,24,29,34,39512453A2104,9,14,19,24,29,34,39013454A21013,14,15, 29,30,31,37,38,39522455A2103,7,11,15,19,23,27,31,35,3951243GPP TS 38.211 V18.4.0 (2024-09)104(Release 18)
3GPP251A3/B31023,27,31,35,392226252A3/B3104,9,14,19,24,29,34,392126253A3/B3104,9,14,19,24,29,34,392226254A3/B3103,7,11,15,19,23,27,31,35,392126255A3/B3101,3,5,7,…,37,3921266.4Physical signals6.4.1Reference signals6.4.1.1Demodulation reference signal for PUSCH6.4.1.1.1Sequence generation6.4.1.1.1.1Sequence generation when transform precoding is disabledIf transform precoding for PUSCH is not enabled, the sequence shall be generated according to.where the pseudo-random sequence c(i)is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialized withcinit=(217(Nsymbslotns,fμ+l+1)(2NIDnSCIDλ+1)+217⌊λ2⌋+2NIDnSCIDλ+nSCIDλ)mod 231where lis the OFDM symbol number within the slot, ns,fμis the slot number within a frame, and-NID0, NID1∈{0,1,…,65535}are given by the higher-layer parameters scramblingID0and scramblingID1, respectively, in the DMRS-UplinkConfig IE if provided and the PUSCH is scheduled by DCI format 0_1, 0_2, or 0_3, or by a PUSCH transmission with a configured grant; -NID0∈{0,1,…,65535}is given by the higher-layer parameter scramblingID0in the DMRS-UplinkConfig IE if provided and the PUSCH is scheduled by DCI format 0_0 with the CRC scrambled by C-RNTI, MCS-C-RNTI, or CS-RNTI; -NID0, NID1∈{0,1,…,65535}are, for each msgA PUSCH configuration, given by the higher-layer parameters msgA-ScramblingID0and msgA-ScramblingID1, respectively, in the msgA-DMRS-Config IE if provided and the PUSCH transmission is triggered by a Type-2 random access procedure as described in clause 8.1A of [5, TS 38.213];-NIDnSCIDλ=NIDcellotherwise;-nSCIDλand λare given by-if the higher-layer parameter dmrs-Uplinkin the DMRS-UplinkConfigIE is providednSCIDλ={nSCIDλ=0orλ=21−nSCIDλ=1λ=λwhere λis the CDM group defined in clause 6.4.1.1.3.-otherwise nSCIDλ=nSCIDλ=03GPP TS 38.211 V18.4.0 (2024-09)108(Release 18)
3GPPThe quantity nSCID∈{0,1}is-indicated by the DM-RS initialization field, if present, either in the DCI associated with the PUSCH transmission if DCI format 0_1, 0_2, or 0_3, in [4, TS 38.212] is used;-indicated by the higher layer parameter dmrs-SeqInitialization, if present, for a Type 1 PUSCH transmission with a configured grant; -determined by the mapping between preamble(s) and a PUSCH occasion and the associated DMRS resource for a PUSCH transmission of Type-2 random access process in [5, TS 38.213];-determined by the mapping between SS/PBCH block(s) and a PUSCH occasion and the associated DMRS resource for a configured-grant based PUSCH transmission in RRC_INACTIVE state [5, TS 38.213];-otherwise nSCID=0.6.4.1.1.1.2Sequence generation when transform precoding is enabledIf transform precoding for PUSCH is enabled, the reference-signal sequence shall be generated according towhere ru,v(α ,δ)(n)with δ=1depends on the configuration:-if the higher-layer parameter dmrs-UplinkTransformPrecodingis configured, π/2-BPSK modulation is used for PUSCH, and the PUSCH transmission is not a msg3 transmission, and the transmission is not scheduled using DCI format 0_0 in a common search space, ru,v(α ,δ)(n)is given by clause 5.2.3 with cinitgiven bycinit=(217(Nsymbslotns,fμ+l+1)(2NIDnSCID+1)+2NIDnSCID+nSCID)mod 231where nSCID=0unless given by the DCI according to clause 7.3.1.1.2 in [4, TS38.212] for a transmission scheduled by DCI format 0_1, or given by the DCI according to clause 7.3.1.1.3 in [4, TS38.212] for a transmission scheduled by DCI format 0_2 if the antenna ports field in the DCI format 0_2 is not 0 bit, or given by the DCI according to clause 7.3.1.1.4 in [4, TS38.212] for a transmission scheduled by DCI format 0_3, or given by the higher-layer parameter antennaPortfor a PUSCH transmission scheduled by a type-1 configured grant; and-NID0, NID1∈{0,1,…,65535}are given by the higher-layer parameters pi2BPSK-ScramblingID0and pi2BPSK-ScramblingID1, respectively, in the DMRS-UplinkConfig IE if provided and the PUSCH is scheduled by DCI format 0_1, or by DCI format 0_2 if the antenna ports field in the DCI format 0_2 is not 0 bit, or by DCI format 0_3, or by a PUSCH transmission with a configured grant;-NID0∈{0,1,…,65535}is given by the higher-layer parameter pi2BPSK-ScramblingID0in the DMRS-UplinkConfig IE if provided and the PUSCH is scheduled by DCI format 0_0 with the CRC scrambled by C-RNTI, MCS-C-RNTI, or CS-RNTI, or by DCI format 0_2 if the antenna ports field in the DCI format 0_2 is 0 bit;-NIDnSCID=NIDcellotherwise; -otherwise, ru,v(α ,δ)(n)is given by clause 5.2.2 with α=0.The sequence group u=(fgh+nIDRS)mod30, where nIDRSis given by-nIDRS=nIDPUSCHif nIDPUSCHis configured by the higher-layer parameter nPUSCH-Identity in the DMRS-UplinkConfig IE, and 3GPP TS 38.211 V18.4.0 (2024-09)109(Release 18)
3GPP-the higher-layer parameter dmrs-UplinkTransformPrecodingis not configured or the higher-layer parameter dmrs-UplinkTransformPrecodingis configured and π/2-BPSK modulation is not used for PUSCH, and -the PUSCH is neither scheduled by RAR UL grant nor scheduled by DCI format 0_0 with CRC scrambled by TC-RNTI according to clause 8.3 in [5, TS 38.213]; -nIDRS=NIDnSCIDif the higher-layer parameter dmrs-UplinkTransformPrecodingis configured, π/2-BPSK modulation is used for PUSCH, the PUSCH transmission is not a msg3 transmission, and the transmission is not scheduled using DCI format 0_0 in a common search space;-nIDRS=NIDcellotherwisewhere ghfand the sequence number vare given by:-if neither group, nor sequence hopping is enabled00ghvf-if group hopping is enabled and sequence hopping is disabled 7slotghsymbs,f028mod300mmfcNnlmvwhere the pseudo-random sequence c(i)is defined by clause 5.2.1 and shall be initialized with 30RSIDinitncat the beginning of each radio frame-if sequence hopping is enabled and group hopping is disabledghslotRBsymbs,fZCsc0if 60otherwisefc NnlMNvwhere the pseudo-random sequence c(i)is defined by clause 5.2.1 and shall be initialized with RSIDinitncat the beginning of each radio frame. The hopping mode is controlled by higher-layer parameters:-for PUSCH transmission scheduled by RAR UL grant or by DCI format 0_0 with CRC scrambled by TC-RNTI, sequence hopping is disabled and group hopping is enabled or disabled by the higher-layer parameter groupHoppingEnabledTransformPrecoding;-for all other transmissions, sequence hopping and group hopping are enabled or disabled by the respective higher-layer parameters sequenceHoppingand sequenceGroupHoppingif these parameters are provided, otherwise, the same hopping mode as for Msg3 shall be used.The UE is not expected to handle the case of combined sequence hopping and group hopping.The quantity labove is the OFDM symbol number in the slot except for the case of double-symbol DMRS in which case lis the OFDM symbol number in the slot of the first symbol of the double-symbol DMRS.6.4.1.1.2(void)6.4.1.1.3Precoding and mapping to physical resources The sequence shall be mapped to the intermediate quantity ~ak ,l(~pj, μ)according to -if transform precoding is not enabled, -if the higher-layer parameter dmrs-TypeEnh is configured3GPP TS 38.211 V18.4.0 (2024-09)110(Release 18)
3GPP~ak ,l(pj, μ)=wf(k')wt(l')r(4n+k')k={8n+2k'+Δconfiguration type 112n+k'+Δconfiguration type 2,k '=0,112n+k'+Δ+4configuration type 2,k '=2,3k'=0,1,2,3l=l+l'n=0,1,… j=0,1,…,υ−1-otherwise~ak ,l(pj, μ)=wf(k')wt(l')r(2n+k')k={4n+2k'+Δconfiguration type 16n+k'+Δconfiguration type 2k'=0,1l=l+l'n=0,1,…j=0,1,…,υ−1-if transform precoding is enabled~ak ,l(p0, μ)=wf(k')wt(l')r(2n+k')k=4n+2k'+Δk'=0,1l=l+l'n=0,1,…where wf(k '), wt(l'), and Δare given by Tables 6.4.1.1.3-1 and 6.4.1.1.3-2 and the configuration type is given by the higher-layer parameter DMRS-UplinkConfig, and both k 'and Δcorrespond to ~p0,…,~pν−1. The intermediate quantity ~ak ,l(~pj, μ)=0if Δ corresponds to any other antenna ports than~pj. The intermediate quantity ~ak ,l(~pj, μ)shall be precoded, multiplied with the amplitude scaling factor DMRSPUSCHin order to conform to the transmit power specified in [6, TS 38.214], and mapped to physical resources according to[ak ,l(p0, μ)⋮ak ,l(pρ−1, μ)]=βPUSCHDMRSW[~ak ,l(~p0, μ)⋮~ak ,l(~pυ−1, μ)]where -the precoding matrix Wis given by clause 6.3.1.5, -the set of antenna ports {p0,...,pρ−1}is given by clause 6.3.1.5, and-the set of antenna ports 1,...,0~~ppis given by [6, TS 38.214];and the following conditions are fulfilled:-the resource elements ~ak ,l(~pj, μ)are within the common resource blocks allocated for PUSCH transmission.The reference point for kis -subcarrier 0 in common resource block 0 if transform precoding is not enabled, and-subcarrier 0 of the lowest-numbered resource block of the scheduled PUSCH allocation if transform precoding is enabled.The reference point for land the position l0of the first DM-RS symbol depends on the mapping type:-for PUSCH mapping type A: -lis defined relative to the start of the slot if frequency hopping is disabled and relative to the start of each hop in case frequency hopping is enabled-l0is given by the higher-layer parameter dmrs-TypeA-Position-for PUSCH mapping type B: 3GPP TS 38.211 V18.4.0 (2024-09)111(Release 18)
3GPP-lis defined relative to the start of the scheduled PUSCH resources if frequency hopping is disabled and relative to the start of each hop in case frequency hopping is enabled-l0=0The position(s) of the DM-RS symbols is given by ¯land duration ldwhere-ldis the duration between the first OFDM symbol of the slot and the last OFDM symbol of the scheduled PUSCH resources in the slot for PUSCH mapping type A according to Tables 6.4.1.1.3-3 and 6.4.1.1.3-4 if intra-slot frequency hopping is not used, or -ldis the duration of scheduled PUSCH resources for PUSCH mapping type B according to Tables 6.4.1.1.3-3 and 6.4.1.1.3-4 if intra-slot frequency hopping is not used, or-ldis the duration per hop according to Table 6.4.1.1.3-6 if intra-slot frequency hopping is used. -if the higher-layer parameter maxLengthin DMRS-UplinkConfigis not configured, or for a msgA transmission msgA-MaxLengthin msgA-DMRS-Configis not configured, the tables shall be used according to single-symbol DM-RS-if the higher-layer parameter maxLengthin DMRS-UplinkConfigis equal to 'len2', the associated DCI or configured grant configuration determines whether single-symbol or double-symbol DM-RS shall be used-if the higher-layer parameter msgA-MaxLengthin msgA-DMRS-Configis equal to 'len2', double-symbol DM-RS shall be used-if the higher-layer parameter dmrs-AdditionalPositionis not set to 'pos0' and intra-slot frequency hopping is enabled according to clause 7.3.1.1.2 in [4, TS 38.212] and by higher layer, Tables 6.4.1.1.3-6 shall be used assuming dmrs-AdditionalPositionis equal to 'pos1' for each hop.For PUSCH mapping type A, -the case dmrs-AdditionalPositionis equal to 'pos3' is only supported when dmrs-TypeA-Positionis equal to 'pos2';-ld=4symbols in Table 6.4.1.1.3-4 is only applicable when dmrs-TypeA-Positionis equal to 'pos2'.For msgA transmitted using PUSCH mapping type A, -the case msgA-DMRS-AdditionalPositionis equal to 'pos3' is only supported when dmrs-TypeA-Positionis equal to 'pos2';-'dmrs-AdditionalPosition' in Tables 6.4.1.1.3-3 to 6.4.1.1.3-6 shall be replaced by msgA-DMRS-AdditionalPosition;-only PUSCH DM-RS configuration type 1 is supported;-only basic DM-RS multiplexing in Table 6.4.1.1.3-5 is supported.For msgA transmitted using PUSCH mapping type B, -'dmrs-AdditionalPosition' in Tables 6.4.1.1.3-3 to 6.4.1.1.3-6 shall be replaced by msgA-DMRS-AdditionalPosition;-only PUSCH DM-RS configuration type 1 is supported;-only basic DM-RS multiplexing in Table 6.4.1.1.3-5 is supported.The time-domain index l', and the supported antenna ports ~pjare given by Table 6.4.1.1.3-5. 3GPP TS 38.211 V18.4.0 (2024-09)112(Release 18)
3GPPTable 6.4.1.1.3-1: Parameters for PUSCH DM-RS configuration type 1.~pCDM group λΔ[wf(0)…wf(3[wt(0)wt(1)]000[+1+1+1+1[+1+1]100[+1−1+1−[+1+1]211[+1+1+1+1[+1+1]311[+1−1+1−[+1+1]400[+1+1+1+1[+1−1]500[+1−1+1−[+1−1]611[+1+1+1+1[+1−1]711[+1−1+1−[+1−1]800[+1+j−1−[+1+1]900[+1−j−1+[+1+1]1011[+1+j−1−[+1+1]1111[+1−j−1+[+1+1]1200[+1+j−1−[+1−1]1300[+1−j−1+[+1−1]1411[+1+j−1−[+1−1]1511[+1−j−1+[+1−1]3GPP TS 38.211 V18.4.0 (2024-09)113(Release 18)
3GPPTable 6.4.1.1.3-2: Parameters for PUSCH DM-RS configuration type 2.~pCDM group λΔ[wf(0)…wf(3[wt(0)wt(1)]000[+1+1+1+1[+1+1]100[+1−1+1−[+1+1]212[+1+1+1+1[+1+1]312[+1−1+1−[+1+1]424[+1+1+1+1[+1+1]524[+1−1+1−[+1+1]600[+1+1+1+1[+1−1]700[+1−1+1−[+1−1]812[+1+1+1+1[+1−1]912[+1−1+1−[+1−1]1024[+1+1+1+1[+1−1]1124[+1−1+1−[+1−1]1200[+1+j−1−[+1+1]1300[+1−j−1+[+1+1]1412[+1+j−1−[+1+1]1512[+1−j−1+[+1+1]1624[+1+j−1−[+1+1]1724[+1−j−1+[+1+1]1800[+1+j−1−[+1−1]1900[+1−j−1+[+1−1]2012[+1+j−1−[+1−1]2112[+1−j−1+[+1−1]2224[+1+j−1−[+1−1]2324[+1−j−1+[+1−1]3GPP TS 38.211 V18.4.0 (2024-09)114(Release 18)
3GPPTable 6.4.1.1.3-5: PUSCH DM-RS time index l'.DM-RS multiplexing DM-RS durationl'Supported antenna ports ~pConfiguration type 1Configuration type 2Basicsingle-symbol DM-RS00 – 30 – 5 double-symbol DM-RS0, 10 – 7 0 – 11Enhancedsingle-symbol DM-RS00 – 3, 8 – 110 – 5, 12 – 17double-symbol DM-RS0, 10 – 150 – 23 Table 6.4.1.1.3-6: PUSCH DM-RS positions ¯lwithin a slot for single-symbol DM-RS and intra-slot frequency hopping enabled. ldin symbolsDM-RS positions lPUSCH mapping type APUSCH mapping type Bl0=0l0=2l0=3dmrs-AdditionalPositiondmrs-AdditionalPositiondmrs-AdditionalPositionpos0pos1pos0pos1pos0pos11sthop2ndhop1sthop2ndhop1sthop2ndhop1sthop2ndhop1sthop2ndhop1sthop2ndhop≤3--------000042020303000005, 62020, 43030, 4000,40, 47202, 60, 43030, 4000,40, 46.4.1.2Phase-tracking reference signals for PUSCH6.4.1.2.1Sequence generation6.4.1.2.1.1Sequence generation if transform precoding is not enabledIf transform precoding is not enabled, the precoded phase-tracking reference signal for subcarrier kon layer jis given byr(~pj)(m)=¿where-antenna ports '~jpor '''~,~jjppassociated with PT-RS transmission are given by clause 6.2.3 of [6, TS 38.214]-r mis given by clause 6.4.1.1.1.1 -at the position of the first DM-RS symbol in absence of PUSCH intra-slot frequency hopping-at the position of the first DM-RS symbol in hop h∈{0,1}in presence of PUSCH intra-slot frequency hopping 6.4.1.2.1.2Sequence generation if transform precoding is enabledIf transform precoding is enabled, the phase-tracking reference signal rm(m')to be mapped in position mbefore transform precoding, where mdepends on the number of PT-RS groups NgroupPT-RS, the number of samples per PT-RS group Nsampgroup, and MscPUSCHaccording to Table 6.4.1.2.2.2-1, shall be generated according to3GPP TS 38.211 V18.4.0 (2024-09)116(Release 18)
3GPP.where the pseudo-random sequence c(i)is defined in clause 5.2.1 and w(i)is given by Table 6.4.1.2.1.2-1. The pseudo-random sequence generator shall be initialized withcinit=(217(Nsymbslotns,fμ+l+1)(2NID+1)+2NID)mod 231where lis the lowest OFDM symbol number in the PUSCH allocation in slot ns,fμthat contains PT-RS according to clause 6.4.1.2.2.2 and NIDis given by the higher-layer parameter nPUSCH-Identity. Table 6.4.1.2.1.2-1: The orthogonal sequence w(i).groupsampRNTImodNn2groupsampN)1()0(ww4groupsampN)3()2()1()0(wwww0[+1+1][+1+1+1+1]1[+1−1][+1−1+1−1]2-[+1+1−1−1]3-[+1−1−1+1]6.4.1.2.2Mapping to physical resources6.4.1.2.2.1Precoding and mapping to physical resources if transform precoding is not enabledThe UE shall transmit phase-tracking reference signals only in the resource blocks used for the PUSCH, and only if the procedure in [6, TS 38.214] indicates that phase-tracking reference signals are being used.The PUSCH PT-RS shall be mapped to resource elements according to-if the higher-layer parameter dmrs-TypeEnhis configured[ak ,l(po, μ)⋮ak ,l(pρ−1, μ)]=βPT-RSW[r(~p0)(4n+k ')⋮r(~pυ−1)(4n+k ')]k={8n+2k'+Δconfiguration type 112n+k'+Δconfiguration type 2,k '∈{0,1}12n+k'+Δ+4configuration type 2,k '∈{2,3}-otherwise[ak ,l(po, μ)⋮ak ,l(pρ−1, μ)]=βPT-RSW[r(~p0)(2n+k ')⋮r(~pυ−1)(2n+k ')]3GPP TS 38.211 V18.4.0 (2024-09)117(Release 18)
3GPPk={4n+2k'+Δconfigurationtype16n+k'+Δconfigurationtype2when all the following conditions are fulfilled-lis within the OFDM symbols allocated for the PUSCH transmission-resource element lk, is not used for DM-RS-k 'and Δcorrespond to ~p0,…,~pν−1The quantities k 'and Δare given by Tables 6.4.1.1.3-1 and 6.4.1.1.3-2, the configuration type is given by the higher-layer parameter dmrs-Typein the DMRS-UplinkConfigIE, and the precoding matrix Wis given by clause 6.3.1.5. The quantity βPTRSis an amplitude scaling factor to conform with the transmit power specified in clause 6.2.2 of [6, TS 38.214].The set of time indices l defined relative to the start of the PUSCH allocation is defined by1. set i=0and lref=02. if any symbol in the interval max(lref+(i−1)LPT-RS+1,lref),…,lref+i LPT-RSoverlaps with a symbol used for DM-RS according to clause 6.4.1.1.3-set i=1-set reflto the symbol index of the DM-RS symbol in case of a single-symbol DM-RS or to the symbol index of the second DM-RS symbol in case of a double-symbol DM-RS-repeat from step 2 as long as is inside the PUSCH allocation3. add to the set of time indices for PT-RS4. increment iby one5. repeat from step 2 above as long as is inside the PUSCH allocationwhere 4,2,1RS-PTLis defined in Table 6.2.3.1-1 of [6, TS 38.214].For the purpose of PT-RS mapping, the resource blocks allocated for PUSCH transmission are numbered from 0 to NRB−1from the lowest scheduled resource block to the highest. The corresponding subcarriers in this set of resource blocks are numbered in increasing order starting from the lowest frequency from 0 to NscRBNRB−1. The subcarriers to which the PT-RS shall be mapped are given bywhere-,...2,1,0i-RErefkis given by Table 6.4.1.2.2.1-1 for the DM-RS port associated with the PT-RS port according to clause 6.2.3 in [6, TS 38.214]. If the higher-layer parameter resourceElementOffsetin PTRS-UplinkConfigis not configured, the column corresponding to 'offset00' shall be used.3GPP TS 38.211 V18.4.0 (2024-09)118(Release 18)
3GPP-nRNTIis the RNTI associated with the DCI scheduling the transmission using C-RNTI, CS-RNTI, MCS-C-RNTI, SP-CSI-RNTI, or is the CS-RNTI in case of configured grant-NRBis the number of resource blocks scheduled-KPT-RS∈{2,4}is given by [6, TS 38.214].Table 6.4.1.2.2.1-1: The parameter RErefk.DM-RS antenna port~pRErefkDM-RS Configuration type 1DM-RS Configuration type 2resourceElementOffsetresourceElementOffsetoffset00offset01offset10offset11offset00offset01offset10offset11002680167124810167021379238933591138924----4510115----510114846100----96802----1057111----117913----12----670113----701614----892315----923816----10114517----1145106.4.1.2.2.2Mapping to physical resources if transform precoding is enabledThe UE shall transmit phase-tracking reference signals only in the resource blocks and OFDM symbols used for the PUSCH, and only if the procedure in [6, TS 38.214] indicates that phase-tracking reference signals are being used.The sequence rm(m')shall be multiplied by β'and mapped to NsampgroupNgroupPT-RScomplex valued symbols in where-are the complex-valued symbols in OFDM symbol lbefore transform precoding according to clause 6.3.1.4-mdepends on the number of PT-RS groups , the number of samples per PT-RS group Nsampgroup, and MscPUSCHaccording to Table 6.4.1.2.2.2-1-β'is the ratio between amplitude of one of the outermost constellation points for the modulation scheme used for PUSCH and one of the outermost constellation points for π/2-BPSK as defined in clause 6.2.3 of [TS 38.214]The set of time indices l for which PT-RS shall be transmitted is defined relative to the start of the PUSCH allocation and is defined by1. set 0iand 0refl2. if any symbol in the interval max(lref+(i−1)LPT-RS+1,lref),…,lref+i LPT-RSoverlaps with a symbol used for DM-RS according to clause 6.4.1.1.3-set i=13GPP TS 38.211 V18.4.0 (2024-09)119(Release 18)
3GPP-set reflto the symbol index of the DM-RS symbol in case of a single-symbol DM-RS and to the symbol index of the second DM-RS symbol in case of a double-symbol DM-RS-repeat from step 2 as long as is inside the PUSCH allocation3. add to the set of time indices for PT-RS4. increment iby one5. repeat from step 2 above as long as is inside the PUSCH allocationwhere LPT-RS∈{1,2}is given by the higher-layer parameter timeDensityTransformPrecodingin the PTRS-UplinkConfigIE.Table 6.4.1.2.2.2-1: PT-RS symbol mapping.Number of PT-RS groupsNumber of samples per PT-RS groupNsampgroupIndex mof PT-RS samples in OFDM symbol lprior to transform precoding22s⌊MscPUSCH/4⌋+k−1where s=1,3and k=0,124s MscPUSCH+kwhere {s=0andk=0,1,2,3s=1andk=−4,−3,−2,−142⌊s MscPUSCH/8⌋+k−1where s=1,3,5,7and k=0,144sMscPUSCH/4+n+kwhere {s=0andk=0,1,2,3n=0s=1,2andk=−2,−1,0,1n=⌊MscPUSCH/8⌋s=4andk=−4,−3,−2,−1n=084⌊s MscPUSCH/8⌋+n+kwhere {s=0andk=0,1,2,3n=s=1,2,3,4,5,6andk=−2,−1,0,1n=⌊MscPUs=8andk=−4,−3,−2,−1n=6.4.1.3Demodulation reference signal for PUCCH6.4.1.3.1Demodulation reference signal for PUCCH format 16.4.1.3.1.1Sequence generationThe reference signal sequence is defined byz(m'NSF,0PUCCH,1MRBPUCCH,1NscRB+m MRBPUCCH,1NscRB+n)=wi(m)ru,v(α ,δ)(n)n=0,1,…, MRBPUCCH,1NscRB−1m=0,1,…, NSF,m'PUCCH,1−1m'={0no intra-slot frequency hopping0,1intra-slot frequency hopping3GPP TS 38.211 V18.4.0 (2024-09)120(Release 18)
3GPPwhere NSF,m'PUCCH,1is given by Table 6.4.1.3.1.1-1, MRBPUCCH,1by clause 9.2.1 of [5, TS 38.213], and the sequence ru,v(α ,δ)(n)is given by clause 5.2.2. Intra-slot frequency hopping shall be assumed when the higher-layer parameter intraSlotFrequencyHoppingis enabled, regardless of whether the frequency-hop distance is zero or not, otherwise no intra-slot frequency hopping shall be assumed.The orthogonal sequence wi(m)is given by Table 6.3.2.4.1.-2 with the same index ias used in clause 6.3.2.4.1.Table 6.4.1.3.1.1-1: Number of DM-RS symbols and the corresponding NSF, {m'PUCCH,1¿.PUCCH length, NsymbPUCCH,1NSF, {m'PUCCH,1¿No intra-slot hoppingm'=0Intra-slot hoppingm'=0m'=142115312632174228422952310532116331263313734147436.4.1.3.1.2Mapping to physical resourcesThe sequence shall be multiplied with the amplitude scaling factor βPUCCH,1in order to conform to the transmit power specified in [5, 38.213] and mapped in sequence starting with z(0)to resource elements (k ,l)p, μin a slot on antenna port p=2000according toak ,l(p, μ)=βPUCCH,1z(m)l=0,2,4,…where l=0corresponds to the first OFDM symbol of the PUCCH transmission and (k ,l)p, μshall be within the resource blocks assigned for PUCCH transmission according to [5, TS 38.213]. For interlaced transmission, the mapping operation shall be repeated for each resource block in the interlace and in the active bandwidth part over the assigned physical resource blocks according to clause 9.2.1 of [5, TS 38.213], with the resource-block dependent sequence generated according to clause 6.3.2.2.6.4.1.3.2Demodulation reference signal for PUCCH format 26.4.1.3.2.1Sequence generationThe reference-signal sequence zl(m)shall be generated according tozl(m NSFPUCCH,2+i)=wn(i)rl(m)rl(m)=1√2(1−2c(2m))+j1√2(1−2c(2m+1))i=0,1,…, NSFPUCCH,2−1m=0,1,…where the pseudo-random sequence c(i)is defined in clause 5.2. The pseudo-random sequence generator shall be initialized withcinit=(217(Nsymbslotns,fμ+l+1) (2NID0+1)+2NID0)mod 2313GPP TS 38.211 V18.4.0 (2024-09)121(Release 18)
3GPPwhere lis the OFDM symbol number within the slot, ns,fμis the slot number within the radio frame, and wn(i)and NSFPUCCH,2are defind in clause 6.3.2.5.2A.The quantity NID0∈{0,1,…,65535}is given by the higher-layer parameter scramblingID0in the DMRS-UplinkConfigIE if provided and by NIDcellotherwise. If a UE is configured with both dmrs-UplinkForPUSCH-MappingTypeAand dmrs-UplinkForPUSCH-MappingTypeB, scramblingID0is obtained from dmrs-UplinkForPUSCH-MappingTypeB.6.4.1.3.2.2Mapping to physical resourcesThe sequence shall be multiplied with the amplitude scaling factor βPUCCH,2in order to conform to the transmit power specified in [5, 38.213] and mapped in sequence starting with zl(0)to resource elements (k ,l)p, μin a slot on antenna port p=2000according toak ,l(p, μ)=βPUCCH,2zl(m)k=3m+1where kis defined relative to subcarrier 0 of common resource block 0 and (k ,l)p, μshall be within the resource blocks assigned for PUCCH transmission according to clause 9.2.1 of [5, TS 38.213]. 6.4.1.3.3Demodulation reference signal for PUCCH formats 3 and 46.4.1.3.3.1Sequence generationThe reference-signal sequence rl(m)shall be generated according towhere MscPUCCH,sis given by clause 6.3.2.6.3 and ru,v(α ,δ)(m)depends on the configuration:-if the higher-layer parameter dmrs-UplinkTransformPrecodingPUCCHis configured, and π/2-BPSK is used for PUCCH, ru,v(α ,δ)(m)is given by clause 5.2.3 with δ=0and cinitgiven by clause 6.4.1.3.2.1. The sequence group uand the sequence number vdepend on the sequence hopping in clause 6.3.2.2.1.-otherwise, for PUCCH format 3, PUCCH format 4 with MRBPUCCH,4=1, and PUCCH format 4 with MRBPUCCH,4>1 when π/2-BPSK is not used for PUCCH, ru,v(α ,δ)(m)is given by clause 6.3.2.2 and the cyclic shift αvaries with the symbol number and slot number according to clause 6.3.2.2.2 with -m0=0for PUCCH format 3 without interlaced mapping;-m0obtained from Table 6.4.1.3.3.1-1 with the orthogonal sequence index ngiven by clause 6.3.2.6.3 for PUCCH format 3 with interlaced mapping and PUCCH format 4. Table 6.4.1.3.3.1-1: Cyclic shift index m0for PUCCH format 3 with interlaced mapping and PUCCH format 4.Orthogonal sequence index nCyclic shift index 0mNSFPUCCH,s=1NSFPUCCH,s=2NSFPUCCH,s=400001-662--33--93GPP TS 38.211 V18.4.0 (2024-09)122(Release 18)
3GPP6.4.1.3.3.2Mapping to physical resourcesThe sequence shall be multiplied with the amplitude scaling factor βPUCCH,s, s∈{3,4}, in order to conform to the transmit power specified in [5, 38.213] and mapped in sequence starting with to resource elements (k ,l)p, μon antenna port p=2000according towhere -kis defined relative to subcarrier 0 of the lowest-numbered resource block assigned for PUCCH transmission, -lis given by Table 6.4.1.3.3.2-1 for the case with and without intra-slot frequency hopping and with and without additional DM-RS as described in clause 9.2.1 of [TS 38.213], where l=0corresponds to the first OFDM symbol of the PUCCH transmission. The resource elements (k ,l)p, μshall be within the resource blocks assigned for PUCCH transmission according to clause 9.2.1 of [5, TS 38.213]. Table 6.4.1.3.3.2-1: DM-RS positions for PUCCH format 3 and 4.PUCCH lengthDM-RS position lwithin PUCCH spanNo additional DM-RSAdditional DM-RSNo hoppingHoppingNo hoppingHopping410, 210, 250, 30, 361, 41, 471, 41, 481, 51, 591, 61, 6102, 71, 3, 6, 8112, 71, 3, 6, 9122, 81, 4, 7, 10132, 91, 4, 7, 11143, 101, 5, 8, 126.4.1.4Sounding reference signal6.4.1.4.1SRS resourceAn SRS resource is configured by the SRS-ResourceIE or the SRS-PosResourceIE and consists of-NapSRS∈{1,2,4,8}antenna ports {pi}i=0NapSRS−1, where the number of antenna ports is given by the higher layer parameter nrofSRS-Portsor nrofSRS-Ports-n8if configured, otherwise NapSRS=1, andpi=1000+iwhen the SRS resource is in a SRS resource set with higher-layer parameter usagein SRS-ResourceSetnot set to 'nonCodebook', or determined according to [6, TS 38.214] when the SRS resource is in a SRS resource set with higher-layer parameter usagein SRS-ResourceSetset to 'nonCodebook'.-Nhop, the number of hops for SRS Tx hopping for an SRS resource configured by SRS-PosResourceand given by the higher layer parameter numberOfHopsif configured, otherwise Nhop=1.-NsymbSRS∈{1,2,4,8,10,12,14}consecutive OFDM symbols given by the field nrofSymbolscontained in the higher layer parameter resourceMapping. If Nhop>1,NsymbSRSis the number of consecutive OFDM symbol per hop.3GPP TS 38.211 V18.4.0 (2024-09)123(Release 18)
3GPP-l0, the starting position in the time domain given by l0=Nsymbslot−1−loffsetwhere the offset loffset∈{0,1,…,13}counts symbols backwards from the end of the slot and is given by the field startPosition contained in the higher layer parameter resourceMappingand loffset≥ NsymbSRS−1. If Nhop>1l0is the starting position of each hop in the time domain, determined by the field startPositionfor each SRS transmission hop.-k0, the frequency-domain starting position of the sounding reference signal.6.4.1.4.2Sequence generationThe sounding reference signal sequence for an SRS resource, or if numberOfHopsfor SRS-PosResourceis provided, for a given hop within an SRS resource, shall be generated according tor(pi)(n,l')=wTDM(pi)(l')ru,v(αi,δ)(n)0≤n≤ Msc,bSRS−1l'∈{0,1,…, NsymbSRS−1}where Msc,bSRSis given by clause 6.4.1.4.3, ru,v(α ,δ)(n)is given by clause 5.2.2 with δ=log2(KTC)and the transmission comb number KTC∈{2,4,8}is contained in the higher-layer parameter transmissionComb. The quantity l'∈{0,1,…, NsymbSRS−1}is the OFDM symbol number within the SRS resource.The quantity wTDM(pi)(l')is given by-if the higher-layer parameter nrofSRS-Ports-n8equals ports8tdmwTDM(pi)(l')={1if l'∈{0,2,…, NsymbSRS−2}∧pi∈{1000,1001,1004,1005}1if l'∈{1,3,…, NsymbSRS−1}∧pi∈{1002,1003,1006,1007}0otherwise-otherwisewTDM(pi)(l')=1The cyclic shift αifor antenna port piis given as αi=2π(nSRScs,inSRScs,max+fcsh(nf,ns,fμ,l')KnSRScs,max)wherenSRScs,i={(nSRScs+nSRScs,max⌊(pi−1000)/4⌋NapSRS/4)mod nSRScs,maxif NapSRS=8 and nSRScs,max=6(nSRScs+nSRScs,max⌊(pi−1000)/2⌋NapSRS/2)mod nSRScs,maxif NapSRS=4 and nSRScs,max=6; or if NapSRS=8 and nSRScs,max=12(nSRScs+nSRScs,max(pi−1000)NapSRS)mod nSRScs,maxotherwise3GPP TS 38.211 V18.4.0 (2024-09)124(Release 18)
3GPPwhere nSRScs∈{0,1,…,nSRScs,max−1}is contained in the higher layer parameter transmissionComb. The maximum number of cyclic shifts nSRScs,maxis given by Table 6.4.1.4.2-1.The quantities piand NapSRSare given by-if the higher-layer parameter nrofSRS-Ports-n8equals ports8tdmpi={1000+pimod2if pi−1000<41000+pimod2+2if pi−1000≥4NapSRS=4-otherwisepi=piNapSRS=NapSRSThe quantity fcsh(nf,ns,fμ,l')is given by-if the higher-layer parameter cyclicShiftHoppingis not configured:fcsh(nf,ns,fμ,l')=0-if the higher-layer parameter cyclicShiftHoppingis configured:fcsh(nf,ns,fμ,l')=¿scshSRS((∑m=07(c(8((nfmod128)Nslotframe , μNsymbslot+ns,fμNsymbslot+l0+l')+m)2m))mod ncshSRS)where scshSRS(n)and ncshSRSis the (n+1)th entry and the cardinality of the set Scsh={scshSRS(0),scshSRS(1),…,scshSRS(ncshSRS−1)}respectively, where Scshis given by the higher-layer parameter hoppingSubset inthe cyclicShiftHoppingIE if configured, otherwise Scsh={0,1,…, K nSRScs,max−1}. The higher-layer parameter hoppingSubset inthe cyclicShiftHoppingIE includes a bitmap of nSRScs,maxbits with 1<ncshSRS<nSRScs,maxnon-zero bits, where if the (n+1)th non-zero bit is the t:th bit in the bitmap, then scshSRS(n)=t−1.The pseudo-random sequence c(i)is defined by clause 5.2.1 and shall be initialized with cinit=nIDhopat the beginning of each radio frame for which nfmod128=0, where the cyclic-shift hopping identity nIDhopis contained in the higher-layer parameter cyclicShiftHopping.If the higher-layer parameter hoppingFinerGranularityis configured, K=2, otherwise K=1.The sequence group u=(fgh(ns,fμ,l')+nIDSRS)mod30and the sequence number vin clause 5.2.2 depends on the higher-layer parameter groupOrSequenceHoppingin the SRS-ResourceIE or the SRS-PosResourceIE.The SRS sequence identity nIDSRS∈{0,1,…,65535}is given by the higher layer parameter sequenceId in the SRS-ResourceIE. -if groupOrSequenceHoppingequals 'neither', neither group, nor sequence hopping shall be used and fgh(ns,fμ,l')=0v=0-if groupOrSequenceHoppingequals 'groupHopping', group hopping but not sequence hopping shall be used and 3GPP TS 38.211 V18.4.0 (2024-09)125(Release 18)
3GPPfgh(ns,fμ,l')=(∑m=07c(8(ns,fμNsymbslot+l0+l')+m)⋅2m)mod 30v=0where the pseudo-random sequence c(i)is defined by clause 5.2.1 and shall be initialized with cinit=nIDSRSat the beginning of each radio frame.-if groupOrSequenceHoppingequals 'sequenceHopping', sequence hopping but not group hopping shall be used andfgh(ns,fμ,l')=0v={c(ns,fμNsymbslot+l0+l')Msc,bSRS≥6NscRB0otherwisewhere the pseudo-random sequence c(i)is defined by clause 5.2.1 and shall be initialized with cinit=nIDSRSat the beginning of each radio frame. Table 6.4.1.4.2-1: Maximum number of cyclic shifts nSRScs,maxas a function of KTC.KTCnSRScs,max28412866.4.1.4.3Mapping to physical resourcesThroughout this clause, when the higher layer parameter numberOfHopsis provided for SRS-PosResource, the sounding reference signal sequence definitions applies to a given hop.When SRS is transmitted on a given SRS resource, the sequence r(pi)(n,l')for each OFDM symbol l'and for each of the antenna ports of the SRS resource shall be multiplied with the amplitude scaling factor βSRSin order to conform to the transmit power specified in [5, 38.213] and mapped in sequence starting with r(pi)(0,l')to resource elements (k ,l)in a slot for each of the antenna ports piaccording toaKTCk'+k0(pi),l'+l0(pi)={1√NapβSRSr(pi)(k',l')if k'=0,1,…, Msc ,bSRS−1∧l'=0,1,…, NsymbSRS−10otherwiseThe length of the sounding reference signal sequence is given byMsc,bSRS=mSRS,bNscRB/(KTCPF)where mSRS,bis given by a selected row of Table 6.4.1.4.3-1 with b=BSRSwhere BSRS∈{0,1,2,3}is given by the field b-SRScontained in the higher-layer parameter freqHoppingif configured, otherwise BSRS=0. The row of the table is selected according to the index CSRS∈{0,1,...,63}given by the field c-SRScontained in the higher-layer parameter freqHopping. The quantity PF∈{2,4}is given by the higher-layer parameter FreqScalingFactorif configured, otherwise PF=1. When FreqScalingFactoris configured, the UE expects the length of the SRS sequence to be a multiple of 6.The frequency-domain starting position k0(pi)is defined byk0(pi)=k0(pi)+noffsetFH+noffsetRPFS+noffset2FH3GPP TS 38.211 V18.4.0 (2024-09)126(Release 18)
3GPPwhere k0(pi)=nshiftNscRB+(kTC(pi)+koffsetl'+fcoh(nf,ns,fμ,l' '))mod KTCandkTC(pi)={(kTC+3KTC/4)mod KTCif NapSRS=8,pi∈{1003,1007}, and nSRScs,max=6(kTC+KTC/2)mod KTCif NapSRS=8,pi∈{1002,1006}, and nSRScs,max=6(kTC+KTC/4)mod KTCif NapSRS=8,pi∈{1001,1005}, and nSRScs,max=6(kTC+KTC/2)mod KTCif NapSRS=8,pi∈{1001,1003,1005,1007}, and nSRScs,max=12(kTC+KTC/2)mod KTCif NapSRS=8,pi∈{1001,1003,1005,1007}, nSRScs,max=8,and nSRScs≥nSRScs,max/2(kTC+KTC/2)mod KTCif NapSRS=4,pi∈{1001,1003}, and nSRScs,max=6 (kTC+KTC/2)mod KTCif NapSRS=4,pi∈{1001,1003}, nSRScs,max∈{8,12},and nSRScs≥nSRScs,max/2kTCotherwisenoffsetFH=∑b=0BSRSmSRS,bNscRBnbnoffsetRPFS=NscRBmSRS,BSRS((kF+khop)modPF)/PFnoffset2FH=((ninithop+nSRSTxHopping)modNhop−ninithop)(mSRS,0−moverlaphop)NscRBand-kF∈{0,1,…, PF−1}is given by the higher-layer parameter StartRBIndexif configured, otherwise kF=0; -khopis given by Table 6.4.1.4.3-3 withkhop=⌊nSRS∏b'=bhopBSRSNb'⌋modPFNbhop=1if the higher-layer parameter EnableStartRBHoppingis configured, otherwise khop=0.-moverlaphop∈{0,1,2,4}is given by the higher-layer parameter overlapValuein TxHoppingConfig.-nSRSTxHopping=0,1,…, NhopsSRS−1is the hop transmission counter in the time domain, where nSRSTxHopping=1,2,…, NhopsSRS−1corresponds to the order of the higher-layer parameter SlotOffsetForRemainingHopsin slotOffsetForRemainingHopsList, wherein the UE expects to be configured with the starting slot offset and starting symbol of the NhopsSRShops in an ascending order sequentially in time domain.-ninithop=⌊nshift/(mSRS,0−moverlaphop)⌋is the initial hop index.The quantity fcoh(nf,ns,fμ,l' ')is given by-if the higher-layer parameter combOffsetHoppingis not configured:fcoh(nf,ns,fμ,l' ')=03GPP TS 38.211 V18.4.0 (2024-09)127(Release 18)
3GPP-if the higher-layer parameter combOffsetHoppingis configured:fcoh(nf,ns,fμ,l' ')=¿scohSRS((∑m=07(c(8((nfmod128)Nslotframe , μNsymbslot+ns,fμNsymbslot+l0+l' ')+m)2m))mod ncohSRS)where scohSRS(n)and ncohSRSis the (n+1)th entry and the cardinality of the set Scoh={scohSRS(0),scohSRS(1),…,scohSRS(ncohSRS−1)}respectively, where Scohis given by the higher-layer parameter hoppingSubset inthe combOffsetHoppingIE if configured, otherwise Scoh={0,1,…, KTC−1}. The higher-layer parameter hoppingSubset inthe combOffsetHoppingIE includes a bitmap of KTCbits with 1<ncohSRS<KTCnon-zero bits, where if the (n+1)th non-zero bit is the t:th bit in the bitmap, then scohSRS(n)=t−1.The pseudo-random sequence c(i)is defined by clause 5.2.1 and shall be initialized with cinit=nIDhopat the beginning of each radio frame for which nfmod128=0, where the comb offset hopping identity nIDhopis contained in the higher-layer parameter combOffsetHopping.If the higher-layer parameter hoppingWithRepetitionis set to repetition, l' '=⌊l'/R⌋R, otherwise l' '=l'.If numberOfHopsis configured:-The reference point for k0(pi)=0is the lowest subcarrier of the configured bandwidth for SRS with Tx hopping configured by the parameter bwpin SRS-PosTx-Hopping.otherwise:-If NBWPstart≤nshiftthe reference point for k0(pi)=0is subcarrier 0 in common resource block 0, otherwise the reference point is the lowest subcarrier of the BWP. If the SRS is configured by the IE SRS-PosResource, the quantity koffsetl'is given by Table 6.4.1.4.3-2, otherwise koffsetl'=0.The frequency domain shift value nshiftadjusts the SRS allocation with respect to the reference point grid and is contained in the higher-layer parameter freqDomainShiftin the SRS-ResourceIE or the SRS-PosResourceIE. The transmission comb offset kTC∈{0,1,…, KTC−1}is contained in the higher-layer parameter transmissionComb in the SRS-ResourceIE or the SRS-PosResourceIE and nbis a frequency position index.Frequency hopping of the sounding reference signal is configured by the parameter bhop∈{0,1,2,3}, given by the field b-hopcontained in the higher-layer parameter freqHoppingif configured, otherwise bhop=0.If bhop≥ BSRS, frequency hopping is disabled and the frequency position index nbremains constant (unless re-configured) and is defined bynb=⌊4nRRC/mSRS,b⌋modNbfor all NsymbSRSOFDM symbols of the SRS resource. The quantity nRRCis given by the higher-layer parameter freqDomainPositionif configured, otherwise nRRC=0, and the values of mSRS,band Nbfor b=BSRSare given by the selected row of Table 6.4.1.4.3-1 corresponding to the configured value of CSRS.If bhop<BSRS, frequency hopping is enabled and the frequency position indices nbare defined by3GPP TS 38.211 V18.4.0 (2024-09)128(Release 18)
3GPPnb={⌊4nRRC/mSRS,b⌋mod Nbb≤bhop(Fb(nSRS)+⌊4nRRC/mSRS,b⌋)mod Nbotherwisewhere Nbis given by Table 6.4.1.4.3-1,Fb(nSRS)={(Nb/2)⌊nSRSmodΠb'=bhopbNb'Πb'=bhopb−1Nb'⌋+⌊nSRSmodΠb'=bhopbNb'2Πb'=bhopb−1Nb'⌋if Nbeven ⌊Nb¿2⌋⌊nSRS¿Πb'=bhopb−1Nb'⌋if Nboddand where Nbhop=1regardless of the value of Nb. The quantity nSRScounts the number of SRS transmissions. For the case of an SRS resource configured as aperiodic by the higher-layer parameter resourceType, it is given by nSRS=⌊l'/(sR)⌋within the slot in which the NsymbSRSsymbol SRS resource is transmitted. The quantity sis given by s=2if the higher-layer parameter nrofSRS-Ports-n8equals ‘ports8tdm’, otherwise s=1. The quantity R≤ NsymbSRS/sis the repetition factor given by the field repetitionFactorif configured, otherwise R=NsymbSRS.For the case of an SRS resource configured as periodic or semi-persistent by the higher-layer parameter resourceType, the SRS counter is given bynSRS=(Nslotframe , μnf+ns,fμ−ToffsetTSRS)(NsymbSRSsR)+⌊l'sR⌋for slots that satisfy (Nslotframe, μnf+ns,fμ−Toffset)modTSRS=0. The periodicity TSRSin slots and slot offset Toffsetare given in clause 6.4.1.4.4.3GPP TS 38.211 V18.4.0 (2024-09)129(Release 18)
3GPP6227216844174163272116178242Table 6.4.1.4.3-2: The offset koffsetl'for SRS as a function of KTCand l'.KTCkoffset0,…,koffsetNsymbSRS−1NsymbSRS=1NsymbSRS=2NsymbSRS=4NsymbSRS=8NsymbSRS=12200,10,1,0,1--4-0, 20, 2, 1, 30, 2, 1, 3, 0, 2, 1, 30, 2, 1, 3, 0, 2, 1, 3, 0, 2, 1, 38--0, 4, 2, 60, 4, 2, 6, 1, 5, 3, 70, 4, 2, 6, 1, 5, 3, 7, 0, 4, 2, 6Table 6.4.1.4.3-3: The quantity khopas a function of khop.khopkhopPF=1PF=2PF=400001-122--13--36.4.1.4.4Sounding reference signal slot configurationThroughout this clause, when the higher layer parameter numberOfHopsis provided for SRS-PosResource, the sounding reference signal slot configuration applies to a given hop.For an SRS resource configured as periodic or semi-persistent by the higher-layer parameter resourceType, a periodicity TSRS(in slots) and slot offset Toffsetare configured according to the higher-layer parameter periodicityAndOffset-por periodicityAndOffset-spin the SRS-ResourceIE, or periodicityAndOffset-p orperiodicityAndOffset-spin the SRS-PosResourceIE. Candidate slots in which the configured SRS resource may be used for SRS transmission are the slots satisfying(Nslotframe, μnf+ns,fμ−Toffset)modTSRS=0and, if the higher-layer parameter srs-PosPeriodicConfigHyperSFN-Indexis configured for a periodicity larger than or equal to 2μ∙10240slots, also(nHFN+NSRSHFN)mod 2=0where NSRSHFN∈{0,1}is given by the higher-layer parameter srs-PosPeriodicConfigHyperSFN-Indexand nHFNis the hyper-frame number.SRS is transmitted as described in clause 6.2.1 of [6, TS 38.214].7Downlink7.1Overview7.1.1Overview of physical channelsA downlink physical channel corresponds to a set of resource elements carrying information originating from higher layers. The following downlink physical channels are defined:-Physical Downlink Shared Channel, PDSCH-Physical Broadcast Channel, PBCH3GPP TS 38.211 V18.4.0 (2024-09)132(Release 18)
3GPP-Physical Downlink Control Channel, PDCCH.7.1.2Overview of physical signalsA downlink physical signal corresponds to a set of resource elements used by the physical layer but does not carry information originating from higher layers. The following downlink physical signals are defined:-Demodulation reference signals, DM-RS-Phase-tracking reference signals, PT-RS-Positioning reference signal, PRS-Channel-state information reference signal, CSI-RS-Primary synchronization signal, PSS-Secondary synchronization signal, SSS7.2Physical resourcesThe frame structure and physical resources the UE shall assume when receiving downlink transmissions are defined in Clause 4.The following antenna ports are defined for the downlink:-Antenna ports starting with 1000 for PDSCH-Antenna ports starting with 2000 for PDCCH-Antenna ports starting with 3000 for channel-state information reference signals-Antenna ports starting with 4000 for SS/PBCH block transmission-Antenna ports starting with 5000 for positioning reference signals The UE shall not assume that two antenna ports are quasi co-located with respect to any QCL type unless specified otherwise.For DM-RS associated with a PDSCH, the channel over which a PDSCH symbol on one antenna port is conveyed can be inferred from the channel over which a DM-RS symbol on the same antenna port is conveyed only if the two symbols are within the same resource as the scheduled PDSCH, in the same slot, and in the same PRG as described in clause 5.1.2.3 of [6, TS 38.214]. For DM-RS associated with a PDCCH, the channel over which a PDCCH symbol on one antenna port is conveyed can be inferred from the channel over which a DM-RS symbol on the same antenna port is conveyed only if the two symbols are within resources for which the UE may assume the same precoding being used as described in clause 7.3.2.2.For DM-RS associated with a PBCH, the channel over which a PBCH symbol on one antenna port is conveyed can be inferred from the channel over which a DM-RS symbol on the same antenna port is conveyed only if the two symbols are within a SS/PBCH block transmitted within the same slot, and with the same block index according to clause 7.4.3.1.7.3Physical channels7.3.1Physical downlink shared channel7.3.1.1ScramblingUp to two codewords q∈{0,1}can be transmitted. In case of single-codeword transmission, q=0.3GPP TS 38.211 V18.4.0 (2024-09)133(Release 18)
3GPPFor each codeword q, the UE shall assume the block of bits b(q)(0),…,b(q)(Mbit(q)−1), where Mbit(q)is the number of bits in codeword qtransmitted on the physical channel, are scrambled prior to modulation, resulting in a block of scrambled bits ~b(q)(0),…,~b(q)(Mbit(q)−1)according to~b(q)(i)=(b(q)(i)+c(q)(i))mod 2where the scrambling sequence c(q)(i)is given by clause 5.2.1. The scrambling sequence generator shall be initialized withcinit=nRNTI⋅215+q⋅214+nIDwhere-nID∈{0,1,...,1023}equals the higher-layer parameter dataScramblingIdentityPDSCHif configured and the RNTI equals the C-RNTI, MCS-C-RNTI, or CS-RNTI, and the transmission is not scheduled using DCI format 1_0 in a common search space; -nID∈{0,1,…,1023}equals the higher-layer parameter dataScramblingIdentityPDSCHin pdsch-ConfigMulticastif configured in a common MBS frequency resource for multicast and the RNTI equals the G-RNTI or the G-CS-RNTI;-nID∈{0,1,…,1023}equals the higher-layer parameter dataScramblingIdentityPDSCHin pdsch-ConfigMCCHor pdsch-ConfigMTCHif configured in a common MBS frequency resource for broadcast and the RNTI equals the MCCH-RNTI or G-RNTI, respectively;-nID∈{0,1,…,1023}equals-the higher-layer parameter dataScramblingIdentityPDSCHif the codeword is scheduled using a CORESET with CORESETPoolIndexequal to 0;-the higher-layer parameter dataScramblingIdentityPDSCH2if the codeword is scheduled using a CORESET with CORESETPoolIndexequal to 1;if the higher-layer parameters dataScramblingIdentityPDSCHand dataScramblingIdentityPDSCH2are configured together with the higher-layer parameter CORESETPoolIndexcontaining two different values, and the RNTI equals the C-RNTI, MCS-C-RNTI, or CS-RNTI, and the transmission is not scheduled using DCI format 1_0 in a common search space;-nID=NIDcellotherwiseand where RNTIncorresponds to the RNTI associated with the PDSCH transmission as described in clause 5.1 of [6, TS 38.214].7.3.1.2ModulationFor each codeword q, the UE shall assume the block of scrambled bits ~b(q)(0),…,~b(q)(Mbit(q)−1)are modulated as described in clause 5.1 using one of the modulation schemes in Table 7.3.1.2-1, resulting in a block of complex-valued modulation symbols d(q)(0),…,d(q)(Msymb(q)−1). Table 7.3.1.2-1: Supported modulation schemes.Modulation schemeModulation order QmQPSK216QAM464QAM6256QAM81024QAM103GPP TS 38.211 V18.4.0 (2024-09)134(Release 18)
3GPP7.3.1.3Layer mappingThe UE shall assume that complex-valued modulation symbols for each of the codewords to be transmitted are mapped onto one or several layers according to Table 7.3.1.3-1. Complex-valued modulation symbols d(q)(0),…,d(q)(Msymb(q)−1)for codeword qshall be mapped onto the layers x(i)=[x(0)(i)…x(υ−1)(i)]T, i=0,1,…, Msymblayer−1where υis the number of layers and Msymblayeris the number of modulation symbols per layer.Table 7.3.1.3-1: Codeword-to-layer mapping for spatial multiplexing.Number of layersNumber of codewordsCodeword-to-layer mappingi=0,1,..., Msymblayer−111x(0)(i)=d(0)(i)Msymblayer=Msymb(0)21x(0)(i)=d(0)(2i)x(1)(i)=d(0)(2i+1)Msymblayer=Msymb(0)/231x(0)(i)=d(0)(3i)x(1)(i)=d(0)(3i+1)x(2)(i)=d(0)(3i+2)Msymblayer=Msymb(0)/341x(0)(i)=d(0)(4i)x(1)(i)=d(0)(4i+1)x(2)(i)=d(0)(4i+2)x(3)(i)=d(0)(4i+3)Msymblayer=Msymb(0)/452x(0)(i)=d(0)(2i)x(1)(i)=d(0)(2i+1)Msymblayer=Msymb(0)/2=Msymb(1)/3x(2)(i)=d(1)(3i)x(3)(i)=d(1)(3i+1)x(4)(i)=d(1)(3i+2)62x(0)(i)=d(0)(3i)x(1)(i)=d(0)(3i+1)x(2)(i)=d(0)(3i+2)Msymblayer=Msymb(0)/3=Msymb(1)/3x(3)(i)=d(1)(3i)x(4)(i)=d(1)(3i+1)x(5)(i)=d(1)(3i+2)72x(0)(i)=d(0)(3i)x(1)(i)=d(0)(3i+1)x(2)(i)=d(0)(3i+2)Msymblayer=Msymb(0)/3=Msymb(1)/4x(3)(i)=d(1)(4i)x(4)(i)=d(1)(4i+1)x(5)(i)=d(1)(4i+2)x(6)(i)=d(1)(4i+3)82x(0)(i)=d(0)(4i)x(1)(i)=d(0)(4i+1)x(2)(i)=d(0)(4i+2)x(3)(i)=d(0)(4i+3)Msymblayer=Msymb(0)/4=Msymb(1)/4x(4)(i)=d(1)(4i)x(5)(i)=d(1)(4i+1)x(6)(i)=d(1)(4i+2)x(7)(i)=d(1)(4i+3)3GPP TS 38.211 V18.4.0 (2024-09)135(Release 18)
3GPP7.3.1.4Antenna port mappingThe block of vectors [x(0)(i)…x(υ−1)(i)]T, i=0,1,…, Msymblayer−1shall be mapped to antenna ports according to[y(p0)(i)⋮y(pυ−1)(i)]=[x(0)(i)⋮x(υ−1)(i)]where i=0,1,…, Msymbap−1, Msymbap=Msymblayer. The set of antenna ports {p0,...,pυ−1}shall be determined according to the procedure in [4, TS 38.212]. 7.3.1.5Mapping to virtual resource blocksThe UE shall, for each of the antenna ports used for transmission of the physical channel, assume the block of complex-valued symbols y(p)(0),…, y(p)(Msymbap−1)conform to the downlink power allocation specified in [6, TS 38.214] and are mapped in sequence starting with y(p)(0)to resource elements (k',l)p, μin the virtual resource blocks assigned for transmission which meet all of the following criteria: -they are in the virtual resource blocks assigned for transmission; -the corresponding physical resource blocks are declared as available for PDSCH according to clause 5.1.4 of [6, TS 38.214];-the corresponding resource elements in the corresponding physical resource blocks are-not used for transmission of the associated DM-RS or DM-RS intended for other co-scheduled UEs as described in clause 7.4.1.1.2;-not used for non-zero-power CSI-RS, which is according to clause 7.4.1.5 and not configured by the TRS-ResourceSetIE, if the corresponding physical resource blocks are for a PDSCH scheduled by a PDCCH with the CRC scrambled by C-RNTI, MCS-C-RNTI, CS-RNTI, G-RNTI for multicast, G-CS-RNTI, or a PDSCH with SPS, except if the non-zero-power CSI-RS is a CSI-RS configured by the higher-layer parameter CSI-RS-Resource-Mobilityin the MeasObjectNRIE or except if the non-zero-power CSI-RS is an aperiodic non-zero-power CSI-RS resource;-not used for PT-RS according to clause 7.4.1.2;-not declared as 'not available for PDSCH according to clause 5.1.4 of [6, TS 38.214].The mapping to resource elements (k ' ,l)p, μallocated for PDSCH according to [6, TS 38.214] and not reserved for other purposes shall be in increasing order of first the index k 'over the assigned virtual resource blocks, where k'=0is the first subcarrier in the lowest-numbered virtual resource block assigned for transmission, and then the index l. 7.3.1.6Mapping from virtual to physical resource blocksThe UE shall assume the virtual resource blocks are mapped to physical resource blocks according to the indicated mapping scheme, non-interleaved or interleaved mapping. If no mapping scheme is indicated, the UE shall assume non-interleaved mapping.For non-interleaved VRB-to-PRB mapping, virtual resource block nis mapped to physical resource block n, except for PDSCH transmissions scheduled with DCI format 1_0 in a common search space in which case virtual resource block nis mapped to physical resource block n+NstartCORESETwhere NstartCORESETis the lowest-numbered physical resource block in the control resource set where the corresponding DCI was received. When two PDCCH candidates from two linked common search space sets as indicated by the higher-layer parameter searchSpaceLinkingare detected, and the two 3GPP TS 38.211 V18.4.0 (2024-09)136(Release 18)
3GPPlinked common search space sets are associated with different control resource sets, the control resource set with the lowest number among the two linked control resource sets is used to determine NstartCORESET.For interleaved VRB-to-PRB mapping, the mapping process is defined by:-Resource block bundles are defined as-for PDSCH transmissions scheduled with DCI format 1_0 with the CRC scrambled by SI-RNTI in Type0-PDCCH common search space in CORESET 0, the set of NBWP,initsizeresource blocks in CORESET 0 are divided into Nbundle=⌈NBWP,initsize/L⌉resource-block bundles in increasing order of the resource-block number and bundle number where L=2is the bundle size and NBWP,initsizeis the size of CORESET 0.-resource block bundle Nbundle−1consists of NBWP,initsizemodLresource blocks if NBWP,initsizemodL>0and Lresource blocks otherwise,-all other resource block bundles consists of Lresource blocks.-for PDSCH transmissions scheduled with DCI format 1_0 in any common search space in bandwidth part iwith starting position NBWP,istart, other than Type0-PDCCH common search space in CORESET 0, the set of NBWP,initsizevirtual resource blocks {0,1,…, NBWP,initsize−1}, where NBWP,initsizeis the size of CORESET 0 if CORESET 0 is configured for the cell and the size of initial downlink bandwidth part if CORESET 0 is not configured for the cell, are divided into Nbundlevirtual resource-block bundles in increasing order of the virtual resource-block number and virtual bundle number and the set of NBWP,initsizephysical resource blocks {NstartCORESET, NstartCORESET+1,…, NstartCORESET+NBWP,initsize−1}are divided into Nbundlephysical resource-block bundles in increasing order of the physical resource-block number and physical bundle number, where Nbundle=⌈(NBWP,initsize+(NBWP,istart+NstartCORESET)modL)/L⌉, L=2is the bundle size, and NstartCORESETis the lowest-numbered physical resource block in the control resource set where the corresponding DCI was received. When two PDCCH candidates from two linked search space sets as indicated by the higher-layer parameter searchSpaceLinkingare detected, and the two linked search space sets are associated with different control resource sets, the control resource set with the lowest number among the two linked control resource sets is used to determine NstartCORESET.-resource block bundle 0 consists of L−((NBWP,istart+NstartCORESET)modL)resource blocks,-resource block bundle Nbundle−1consists of (NBWP,initsize+NBWP,istart+NstartCORESET)modLresource blocks if (NBWP,initsize+NBWP,istart+NstartCORESET)modL>0and Lresource blocks otherwise,-all other resource block bundles consists of Lresource blocks.-for all other PDSCH transmissions, the set of NBWP,isizeresource blocks in bandwidth part iwith starting position NBWP,istartare divided into Nbundle=⌈(NBWP,isize+(NBWP,istartmodLi))/Li⌉resource-block bundles in increasing order of the resource-block number and bundle number where Liis the bundle size for bandwidth part iprovided by the higher-layer parameter vrb-ToPRB-Interleaverfor DCI formats 1_0, 1_1, and 1_3 in a UE-specific search space, or vrb-ToPRB-InterleaverDCI-1-2for DCI format 1_2, and-resource block bundle 0 consists of iiiLNLmodstartBWP,resource blocks,-resource block bundle 1bundleNconsists of iiiLNNmodsize,BWPstart,BWPresource blocks if 0modsize,BWPstart,BWPiiiLNNand iLresource blocks otherwise,3GPP TS 38.211 V18.4.0 (2024-09)137(Release 18)
3GPP-all other resource block bundles consists of iLresource blocks.-Virtual resource blocks in the interval 1,...,1,0bundleNjare mapped to physical resource blocks according to-virtual resource block bundle 1bundleNis mapped to physical resource block bundle 1bundleN-virtual resource block bundle j∈{0,1,..., Nbundle−2}is mapped to physical resource block bundle f(j)where f(j)=rC+cj=cR+rr=0,1,..., R−1c=0,1,...,C−1R=2C=⌊Nbundle/R⌋-The UE is not expected to be configured with Li=2simultaneously with a PRG size of 4 as defined in [6, TS 38.214]The UE may assume that the same precoding in the frequency domain is used within a PRB bundle and the bundle size is determined by clause 5.1.2.3 in [6, TS 38.214]. The UE shall not make any assumption that the same precoding is used for different bundles of common resource blocks. For PDSCH transmissions scheduled by DCI format 4_1 or 4_2, and using G-RNTI or G-CS-RNTI, the quantities NBWP,istartand NBWP,isizein this clause are replaced by NMBS,istartand NMBS,isize, respectively, and Liis the bundle size for the common MBS frequency resource provided by the higher-layer parameter vrb-ToPRB-Interleaverin pdsch-ConfigMulticast.For PDSCH transmissions scheduled by DCI format 4_0, and using G-RNTI for broadcast, MCCH-RNTI, or Multicast-MCCH-RNTI, the quantities NBWP,istartand NBWP,isizein this clause are replaced by NMBS,istartand NMBS,isize, respectively, and Li=2.7.3.2Physical downlink control channel (PDCCH)7.3.2.1Control-channel element (CCE)A physical downlink control channel consists of one or more control-channel elements (CCEs) as indicated in Table 7.3.2.1-1.Table 7.3.2.1-1: Supported PDCCH aggregation levels.Aggregation levelNumber of CCEs1122448816167.3.2.2Control-resource set (CORESET)A control-resource set consists of NRBCORESETresource blocks in the frequency domain and NsymbCORESET∈{1,2,3}symbols in the time domain.A control-channel element consists of 6 resource-element groups (REGs) where a resource-element group equals one resource block during one OFDM symbol. Resource-element groups within a control-resource set are numbered in increasing order in a time-first manner, starting with 0 for the first OFDM symbol and the lowest-numbered resource block in the control resource set.3GPP TS 38.211 V18.4.0 (2024-09)138(Release 18)
3GPPA UE can be configured with multiple control-resource sets. Each control-resource set is associated with one CCE-to-REG mapping only.The CCE-to-REG mapping for a control-resource set can be interleaved or non-interleaved and is described by REG bundles:-REG bundle iis defined as REGs {iL,iL+1,…,iL+L−1}where Lis the REG bundle size, i=0,1,…, NREGCORESET/L−1, and NREGCORESET=NRBCORESETNsymbCORESETis the number of REGs in the CORESET-CCE jconsists of REG bundles {f(6j/L),f(6j/L+1),…,f(6j/L+6/L−1)}where f(∙)is an interleaverFor non-interleaved CCE-to-REG mapping, L=6and f(x)=x.For interleaved CCE-to-REG mapping, L∈{2,6}for NsymbCORESET=1and L∈{NsymbCORESET,6}for NsymbCORESET∈{2,3}. The interleaver is defined by f(x)=(rC+c+nshift)mod(NREGCORESET/L)x=cR+rr=0,1,…, R−1c=0,1,…,C−1C=NREGCORESET/(LR)where R∈{2,3,6}.The UE is not expected to handle configurations resulting in the quantity Cnot being an integer.For a CORESET configured by the ControlResourceSetIE: -NRBCORESETis given by the higher-layer parameter frequencyDomainResources;-NsymbCORESETis given by the higher-layer parameter duration, where NsymbCORESET=3is supported only if the higher-layer parameter dmrs-TypeA-Positionequals 3;-interleaved or non-interleaved mapping is given by the higher-layer parameter cce-REG-MappingType;-Lequals 6 for non-interleaved mapping and is given by the higher-layer parameter reg-BundleSizefor interleaved mapping;-Ris given by the higher-layer parameter interleaverSize;-nshift∈{0,1,…,274}is given by the higher-layer parameter shiftIndexif provided, otherwise nshift=NIDcell;-for both interleaved and non-interleaved mapping:-if the higher-layer parameter precoderGranularity equals sameAsREG-bundlethe UE may assume the same precoding being used within a REG bundle -if the higher-layer parameter precoderGranularity equals allContiguousRBs,-the UE may assume the same precoding being used across the all resource-element groups within the set of contiguous resource blocks in the CORESET;-the UE may assume that no resource elements in the CORESET overlap with an SSB;-if the UE is not provided with the higher-layer parameter pdcch-CandidateReceptionWith-CRS-Overlap, the UE may assume that no resource elements in the CORESET overlap with LTE cell-specific reference signals as indicated by the higher-layer parameter lte-CRS-ToMatchAround, lte-CRS-PatternList1, lte-CRS-PatternList2, lte-CRS-PatternList3, or lte-CRS-PatternList4.For CORESET 0 configured by the ControlResourceSetZeroIE:-NRBCORESETand NsymbCORESETare defined by clause 13 of [5, TS 38.213];-the UE may assume interleaved mapping; 3GPP TS 38.211 V18.4.0 (2024-09)139(Release 18)
3GPP-L=6;-R=2;-nshift=NIDcell;-the UE may assume normal cyclic prefix when CORESET 0 is configured by MIB or SIB1;-the UE may assume the same precoding being used within a REG bundle.For CORESET 0 on a carrier where the SS/PBCH block is detected at sync raster points defined in Tables 5.4.3.1-2 or 5.4.3.1-3 of [14, TS 38.101-1] and configured by the ControlResourceSetZeroIE:-NRBCORESETand NsymbCORESETare defined by Table 13-0 in clause 13 of [5, TS 38.213];-if NRBCORESET=12on a carrier with a channel bandwidth of 3 MHz, the CORESET is obtained by applying the description above assuming interleaved mapping with R=2;-if NRBCORESET=24on a carrier with a channel bandwidth of 3 MHz, the CORESET is obtained by applying the description above assuming interleaved mapping with R=2or non-interleaved mapping as defined by clause 13 of [5, TS 38.213], followed by puncturing the 9 highest-numbered resource blocks to obtain the 15 resource blocks forming CORESET 0;-if NRBCORESET=24on a carrier with a channel bandwidth of 5 MHz, the CORESET is obtained by applying the description above assuming interleaved mapping with R=2, followed by puncturing the 4 highest-numbered resource blocks to obtain the 20 resource blocks forming CORESET 0;-L=6;-nshift=NIDcell;-the UE may assume normal cyclic prefix when CORESET 0 is configured by MIB or SIB1;-the UE may assume the same precoding being used within a REG bundle.7.3.2.3ScramblingThe UE shall assume the block of bits b(0),…,b(Mbit❑−1), where Mbit❑is the number of bits transmitted on the physical channel, is scrambled prior to modulation, resulting in a block of scrambled bits ~b(0),…,~b(Mbit❑−1)according to~b(i)=(b(i)+c(i))mod 2where the scrambling sequence c(i)is given by clause 5.2.1. The scrambling sequence generator shall be initialized with31ID16RNTIinit2mod2nncwhere-for a UE-specific search space as defined in clause 10 of [5, TS 38.213], 65535,...,1,0IDnequals the higher-layer parameter pdcch-DMRS-ScramblingIDif configured;-for a PDCCH with the CRC scrambled by G-RNTI, G-CS-RNTI, MCCH-RNTI, or Multicast-MCCH-RNTI in a common search space as defined in clause 10 of [5, TS 38.213], nID∈{0,1,…,65535}equals the higher-layer parameter pdcch-DMRS-ScramblingIDif configured in a common MBS frequency resource;-nID=NIDcellotherwise3GPP TS 38.211 V18.4.0 (2024-09)140(Release 18)
3GPPand where -RNTInis given by the C-RNTI for a PDCCH in a UE-specific search space if the higher-layer parameter pdcch-DMRS-ScramblingIDis configured, and-0RNTInotherwise.7.3.2.4PDCCH modulationThe UE shall assume the block of bits ~b(0),…,~b(Mbit−1)to be QPSK modulated as described in clause 5.1.3, resulting in a block of complex-valued modulation symbols d(0),…,d(Msymb−1).7.3.2.5Mapping to physical resourcesThe UE shall assume the block of complex-valued symbols d(0),…,d(Msymb−1)to be scaled by a factor βPDCCHand mapped to resource elements (k ,l)p, μused for the monitored PDCCH and not used for the associated PDCCH DMRS in increasing order of first k, then l. The antenna port p=2000.7.3.3Physical broadcast channel7.3.3.1ScramblingThe UE shall assume the block of bitsb(0),…,b(Mbit❑−1), where Mbitis the number of bits transmitted on the physical broadcast channel, are scrambled prior to modulation, resulting in a block of scrambled bits ~b(0),…,~b(Mbit❑−1)according to~b(i)=(b(i)+c(i+v Mbit))mod 2where the scrambling sequence c(i)is given by clause 5.2. The scrambling sequence shall be initialized with cinit=NIDcellat the start of each SS/PBCH block where-for Lmax=4, vis the two least significant bits of the candidate SS/PBCH block index-for Lmax>4, vis the three least significant bits of the candidate SS/PBCH block indexwith Lmaxbeing the maximum number of candidate SS/PBCH blocks in a half frame, as described in [5, TS 38.213].7.3.3.2ModulationThe UE shall assume the block of bits ~b(0),…,~b(Mbit❑−1)are QPSK modulated as described in clause 5.1.3, resulting in a block of complex-valued modulation symbols dPBCH(0),…,dPBCH(Msymb−1). 7.3.3.3Mapping to physical resourcesMapping to physical resources is described in clause 7.4.3.7.4Physical signals7.4.1Reference signals7.4.1.1Demodulation reference signals for PDSCH7.4.1.1.1Sequence generationThe UE shall assume the sequence r(n)is defined by3GPP TS 38.211 V18.4.0 (2024-09)141(Release 18)
3GPP.where the pseudo-random sequence c(i)is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialized withcinit=(217(Nsymbslotns,fμ+l+1)(2NIDnSCIDλ+1)+217⌊λ2⌋+2NIDnSCIDλ+nSCIDλ)mod 231where lis the OFDM symbol number within the slot, ns,fμis the slot number within a frame, and-NID0, NID1∈{0,1,…,65535}are given by the higher-layer parameters scramblingID0and scramblingID1, respectively, in the DMRS-DownlinkConfig IE if provided and the PDSCH is scheduled by PDCCH using DCI format 1_1, 1_2, or 1_3 with the CRC scrambled by C-RNTI, MCS-C-RNTI, or CS-RNTI;-NID0∈{0,1,…,65535}is given by the higher-layer parameter scramblingID0in the DMRS-DownlinkConfig IE if provided and the PDSCH is scheduled by PDCCH using DCI format 1_0 with the CRC scrambled by C-RNTI, MCS-C-RNTI, or CS-RNTI;-NID0, NID1∈{0,1,…,65535}are given by the higher-layer parameters scramblingID0and scramblingID1, respectively, in the DMRS-DownlinkConfig IE in pdsch-ConfigMulticastif provided in a common MBS frequency resource for multicast and the PDSCH is scheduled by PDCCH using DCI format 4_2 with the CRC scrambled by G-RNTI or G-CS-RNTI;-NID0∈{0,1,…,65535}is given by the higher-layer parameter scramblingID0in the DMRS-DownlinkConfig IE in pdsch-ConfigMulticastif provided in a common MBS frequency resource for multicast and the PDSCH is scheduled by PDCCH using DCI format 4_1 with the CRC scrambled by G-RNTI or G-CS-RNTI;-NID0∈{0,1,…,65535}is given by the higher-layer parameter scramblingID0in pdsch-ConfigMCCHor pdsch-ConfigMTCHif provided in a common MBS frequency resource for broadcast and the PDSCH is scheduled by PDCCH with the CRC scrambled by MCCH-RNTI or G-RNTI, respectively;-NIDnSCIDλ=NIDcellotherwise; -nSCIDλ∧λ aregiven by-if the higher-layer parameter dmrs-Downlinkin the DMRS-DownlinkConfigIE is providednSCIDλ={nSCIDλ=0orλ=21−nSCIDλ=1λ=λwhere λ is the CDM group defined in clause 7.4.1.1.2.-otherwise by nSCIDλ=nSCIDλ=0The quantity nSCID∈{0,1}is given by the DM-RS sequence initialization field, if present, in the DCI associated with the PDSCH transmission if DCI format 1_1, 1_2, 1_3, or 4_2 in [4, TS 38.212] is used, otherwise nSCID=0.7.4.1.1.2Mapping to physical resourcesThe UE shall assume the PDSCH DM-RS being mapped to physical resources according to configuration type 1 or configuration type 2 as given by the higher-layer parameter dmrs-Type.3GPP TS 38.211 V18.4.0 (2024-09)142(Release 18)
3GPPThe UE shall assume the sequence r(m)is scaled by a factor βPDSCHDMRSto conform with the transmission power specified in [6, TS 38.214] and mapped to resource elements (k ,l)p, μaccording to-if the higher-layer parameter dmrs-TypeEnh is configured~ak ,l(pj, μ)=βPDSCHDMRSwf(k')wt(l')r(4n+k')k={8n+2k'+Δconfiguration type 112n+k'+Δconfiguration type 2,k '=0,112n+k'+Δ+4configuration type 2,k '=2,3k'=0,1,2,3l=l+l'n=0,1,… j=0,1,…,υ−1-otherwise~ak ,l(pj, μ)=βPDSCHDMRSwf(k')wt(l')r(2n+k')k={4n+2k'+Δconfiguration type 16n+k'+Δconfiguration type 2k'=0,1l=l+l'n=0,1,…j=0,1,…,υ−1where wf(k'), wt(l'), and Δare given by Tables 7.4.1.1.2-1 and 7.4.1.1.2-2 and the following conditions are fulfilled:-the resource elements are within the common resource blocks allocated for PDSCH transmissionThe reference point for kis -subcarrier 0 of the lowest-numbered resource block in CORESET 0 if the corresponding PDCCH is associated with CORESET 0 and Type0-PDCCH common search space and is addressed to SI-RNTI;-otherwise, subcarrier 0 in common resource block 0 The reference point for land the position l0of the first DM-RS symbol depends on the mapping type:-for PDSCH mapping type A: -lis defined relative to the start of the slot-l0=3if the higher-layer parameter dmrs-TypeA-Positionis equal to 'pos3' and l0=2otherwise-for PDSCH mapping type B: -lis defined relative to the start of the scheduled PDSCH resources-l0=0The position(s) of the DM-RS symbols is given by ¯land duration ldwhere-for PDSCH mapping type A, ldis the duration between the first OFDM symbol of the slot and the last OFDM symbol of the scheduled PDSCH resources in the slot -for PDSCH mapping type B, ldis the duration of the scheduled PDSCH resourcesand according to Tables 7.4.1.1.2-3 and 7.4.1.1.2-4. For PDSCH mapping type A-the case dmrs-AdditionalPosition equals to 'pos3' is only supported when dmrs-TypeA-Positionis equal to 'pos2';-ld=3and ld=4symbols in Tables 7.4.1.1.2-3 and 7.4.1.1.2-4 respectively is only applicable when dmrs-TypeA-Positionis equal to 'pos2';-single-symbol DM-RS, l1=11except if all of the following conditions are fulfilled in which case l1=12:3GPP TS 38.211 V18.4.0 (2024-09)143(Release 18)
3GPP-the higher-layer parameter lte-CRS-ToMatchAround, lte-CRS-PatternList1, lte-CRS-PatternList2, lte-CRS-PatternList3, or lte-CRS-PatternList4is configured; and-the higher-layer parameter dmrs-AdditionalPositionis equal to 'pos1' and l0=3; and-the UE has indicated it is capable of additionalDMRS-DL-Alt For PDSCH mapping type B-if the PDSCH duration ld∈{2,3,4,5,6,7,8,9,10,11,12,13}OFDM symbols for normal cyclic prefix or ld∈{2,4,6}OFDM symbols for extended cyclic prefix, and the front-loaded DM-RS of the PDSCH allocation collides with resources reserved for a search space set associated with a CORESET, ¯lshall be incremented such that the first DM-RS symbol occurs immediately after the CORESET and until no collision with any CORESET occurs, and-if the PDSCH duration ldis 2 symbols, the UE is not expected to receive a DM-RS symbol beyond the second symbol;-if the PDSCH duration ldis 5 symbols and if one additional single-symbol DMRS is configured, the UE only expects the additional DM-RS to be transmitted on the 5th symbol when the front-loaded DM-RS symbol is in the 1st symbol of the PDSCH duration, otherwise the UE should expect that the additional DM-RS is not transmitted;-if the PDSCH duration ldis 7 symbols for normal cyclic prefix or 6 symbols for extended cyclic prefix: -if one additional single-symbol DM-RS is configured, the UE only expects the additional DM-RS to be transmitted on the 5th or 6th symbol when the front-loaded DM-RS symbol is in the 1st or 2nd symbol, respectively, of the PDSCH duration, otherwise the UE should expect that the additional DM-RS is not transmitted;-if the PDSCH duration ld∈{5,6,7,8,9,10,11,12,13}OFDM symbols, the UE is not expected to receive the front-loaded DM-RS beyond the 4th symbol;-if the PDSCH duration ldis 12 or 13 symbols, the UE is not expected to receive DM-RS mapped to symbol 12 or later in the slot;-for all values of the PDSCH duration ldother than 2, 5, and 7 symbols, the UE is not expected to receive DM-RS beyond the (ld−1):th symbol;-if the PDSCH duration ldis less than or equal to 4 OFDM symbols, only single-symbol DM-RS is supported. -if the higher-layer parameter lte-CRS-ToMatchAround, lte-CRS-PatternList1, lte-CRS-PatternList2, lte-CRS-PatternList3, or lte-CRS-PatternList4is configured, the PDSCH duration ld=10symbols for normal cyclic prefix, the subcarrier spacing configuration μ=0, single-symbol DM-RS is configured, and at least one PDSCH DM-RS symbol in the PDSCH allocation collides with a symbol containing resource elements as indicated by the higher-layer parameter lte-CRS-ToMatchAround, lte-CRS-PatternList1, lte-CRS-PatternList2, lte-CRS-PatternList3, or lte-CRS-PatternList4, then lshall be incremented by one in all slots.The time-domain index l'and the supported antenna ports pare given by Table 7.4.1.1.2-5 where -single-symbol DM-RS is used if the higher-layer parameter maxLengthin the DMRS-DownlinkConfigIE is not configured;-single-symbol or double-symbol DM-RS is determined by the associated DCI if the higher-layer parameter maxLengthin the DMRS-DownlinkConfigIE is equal to 'len2';-basic or enhanced DM-RS multiplexing is controlled by the higher-layer parameter dmrs-TypeEnh.In absence of CSI-RS configuration, and unless otherwise configured, the UE may assume PDSCH DM-RS and SS/PBCH block to be quasi co-located with respect to Doppler shift, Doppler spread, average delay, delay spread, and, when applicable, spatial Rx parameters. Unless specified otherwise, the UE may assume that the PDSCH DM-RS 3GPP TS 38.211 V18.4.0 (2024-09)144(Release 18)
3GPPwithin the same CDM group are quasi co-located with respect to Doppler shift, Doppler spread, average delay, delay spread, and spatial Rx (when applicable). The UE may assume that DMRS ports associated with a TCI state as described in clause 5.1.6.2 of [6, TS 38.214] of a PDSCH are QCL with QCL Type A, Type D (when applicable) and average gain.The UE may assume that no DM-RS collides with the SS/PBCH block.Table 7.4.1.1.2-1: Parameters for PDSCH DM-RS configuration type 1.pCDM group λΔ[wf(0)…wf(3[wt(0)wt(1)]100000[+1+1+1+1[+1+1]100100[+1−1+1−[+1+1]100211[+1+1+1+1[+1+1]100311[+1−1+1−[+1+1]100400[+1+1+1+1[+1−1]100500[+1−1+1−[+1−1]100611[+1+1+1+1[+1−1]100711[+1−1+1−[+1−1]100800[+1+1−1−[+1+1]100900[+1−1−1+[+1+1]101011[+1+1−1−[+1+1]101111[+1−1−1+[+1+1]101200[+1+1−1−[+1−1]101300[+1−1−1+[+1−1]101411[+1+1−1−[+1−1]101511[+1−1−1+[+1−1]3GPP TS 38.211 V18.4.0 (2024-09)145(Release 18)
3GPPTable 7.4.1.1.2-2: Parameters for PDSCH DM-RS configuration type 2.pCDM group λΔ[wf(0)…wf(3[wt(0)wt(1)]100000[+1+1+1+1[+1+1]100100[+1−1+1−[+1+1]100212[+1+1+1+1[+1+1]100312[+1−1+1−[+1+1]100424[+1+1+1+1[+1+1]100524[+1−1+1−[+1+1]100600[+1+1+1+1[+1−1]100700[+1−1+1−[+1−1]100812[+1+1+1+1[+1−1]100912[+1−1+1−[+1−1]101024[+1+1+1+1[+1−1]101124[+1−1+1−[+1−1]101200[+1+1−1−[+1+1]101300[+1−1−1+[+1+1]101412[+1+1−1−[+1+1]101512[+1−1−1+[+1+1]101624[+1+1−1−[+1+1]101724[+1−1−1+[+1+1]101800[+1+1−1−[+1−1]101900[+1−1−1+[+1−1]102012[+1+1−1−[+1−1]102112[+1−1−1+[+1−1]102224[+1+1−1−[+1−1]102324[+1−1−1+[+1−1]3GPP TS 38.211 V18.4.0 (2024-09)146(Release 18)
3GPPTable 7.4.1.1.2-5: PDSCH DM-RS time index l'and antenna ports p.DM-RS multiplexing DM-RS durationl'Supported antenna ports pConfiguration type 1Configuration type 2Basicsingle-symbol DM-RS01000 – 10031000 – 1005 double-symbol DM-RS0, 11000 – 1007 1000 – 1011Enhancedsingle-symbol DM-RS01000 – 1003, 1008 – 10111000 – 1005, 1012 – 1017double-symbol DM-RS0, 11000 – 10151000 – 1023 7.4.1.2Phase-tracking reference signals for PDSCH7.4.1.2.1Sequence generationThe phase-tracking reference signal for subcarrier kis given by-If the higher-layer parameter dmrs-TypeEnhis configuredrk=r(4m+k ')-otherwiserk=r(2m+k ')where r(∙)is the demodulation reference signal given by clause 7.4.1.1.2 at position l0and subcarrier k.7.4.1.2.2Mapping to physical resourcesThe UE shall assume phase-tracking reference signals being present only in the resource blocks used for the PDSCH, and only if the procedure in [6, TS 38.214] indicates phase-tracking reference signals being used.If present, the UE shall assume the PDSCH PT-RS is scaled by a factor βPT-RS,ito conform with the transmission power specified in clause 4.1 of [6, TS 38.214] and mapped to resource elements (k ,l)p, μaccording toak ,l(p, μ)=βPT-RS,irkwhen all the following conditions are fulfilled-lis within the OFDM symbols allocated for the PDSCH transmission-resource element (k ,l)p, μis not used for DM-RS, non-zero-power CSI-RS (except for those configured for mobility measurements or with resourceTypein corresponding CSI-ResourceConfigconfigured as 'aperiodic'), zero-power CSI-RS, SS/PBCH block, a detected PDCCH according to clause 5.1.4.1 of [6, TS38.214], or is declared as 'not available' by clause 5.1.4 of [6, TS 38.214]The set of time indices ldefined relative to the start of the PDSCH allocation is defined by1.set i=0and lref=02.if any symbol in the interval max❑(lref+(i−1)LPT-RS+1,lref),…,lref+i LPT-RSoverlaps with a symbol used for DM-RS according to clause 7.4.1.1.2-set i=1-set lrefto the symbol index of the DM-RS symbol in case of a single-symbol DM-RS and to the symbol index of the second DM-RS symbol in case of a double-symbol DM-RS-repeat from step 2 as long as lref+i LPT-RSis inside the PDSCH allocation3.add lref+i LPT-RSto the set of time indices for PT-RS3GPP TS 38.211 V18.4.0 (2024-09)148(Release 18)
3GPP4.increment iby one5.repeat from step 2 above as long as lref+i LPT-RSis inside the PDSCH allocationwhere LPT-RS∈{1,2,4}.For the purpose of PT-RS mapping, the resource blocks allocated for PDSCH transmission are numbered from 0 to NRB−1from the lowest scheduled resource block to the highest. The corresponding subcarriers in this set of resource blocks are numbered in increasing order starting from the lowest frequency from 0 to NscRBNRB−1. The subcarriers to which the UE shall assume the PT-RS is mapped are given bywhere -i=0,1,2,…-RErefkis given by Table 7.4.1.2.2-1 for the DM-RS port associated with the PT-RS port according to clause 5.1.6.3 in [6, TS 38.214]. If the higher-layer parameter resourceElementOffset in the PTRS-DownlinkConfigIE is not configured, the column corresponding to 'offset00' shall be used.-nRNTIis the RNTI associated with the DCI scheduling the transmission-NRBis the number of resource blocks scheduled-KPT-RS∈{2,4}is given by [6, TS 38.214].Table 7.4.1.2.2-1: The parameter RErefk.DM-RS antenna portpRErefkDM-RS Configuration type 1DM-RS Configuration type 2resourceElementOffsetresourceElementOffsetoffset00offset01offset10offset11offset00offset01offset10offset11100002680167100124810167010021379238910033591138921004----4510111005----510114100846100----10096802----101057111----10117913----1012----67011013----70161014----89231015----92381016----1011451017----1145107.4.1.3Demodulation reference signals for PDCCH7.4.1.3.1Sequence generationThe UE shall assume the reference-signal sequence rl(m)for OFDM symbol lis defined by3GPP TS 38.211 V18.4.0 (2024-09)149(Release 18)
3GPPrl(m)=1√2(1−2⋅c(2m))+j1√2(1−2⋅c(2m+1)).where the pseudo-random sequence c(i)is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialized withcinit=(217(Nsymbslotns,fμ+l+1)(2NID+1)+2NID)mod 231where lis the OFDM symbol number within the slot, ns,fμis the slot number within a frame, and-NID∈{0,1,…,65535}is given by the higher-layer parameter pdcch-DMRS-ScramblingIDif provided;-NID∈{0,1,…,65535}is given by the higher-layer parameter pdcch-DMRS-ScramblingIDif configured for a common search space in a common MBS frequency resource;-NID=NIDcellotherwise.7.4.1.3.2Mapping to physical resourcesThe UE shall assume the sequence rl(m)is mapped to resource elements (k ,l)p, μaccording towhere the following conditions are fulfilled-they are within the resource element groups constituting the PDCCH the UE attempts to decode if the higher-layer parameter precoderGranularity equals sameAsREG-bundle,-all resource-element groups within the set of contiguous resource blocks in the CORESET where the UE attempts to decode the PDCCH if the higher-layer parameter precoderGranularity equals allContiguousRBs.The reference point for kis -subcarrier 0 of the lowest-numbered resource block in the CORESET if the CORESET is configured by the PBCH or by the controlResourceSetZerofield in the PDCCH-ConfigCommonIE,-subcarrier 0 in common resource block 0 otherwiseThe quantity lis the OFDM symbol number within the slot.The antenna port p=2000.A UE not attempting to detect a PDCCH in a CORESET shall not make any assumptions on the presence or absence of DM-RS in the CORESET.In absence of CSI-RS configuration, and unless otherwise configured, the UE may assume PDCCH DM-RS and SS/PBCH block to be quasi co-located with respect to Doppler shift, Doppler spread, average delay, delay spread, and, when applicable, spatial Rx parameters.7.4.1.4Demodulation reference signals for PBCH7.4.1.4.1Sequence generationThe UE shall assume the reference-signal sequence r(m)for an SS/PBCH block is defined by3GPP TS 38.211 V18.4.0 (2024-09)150(Release 18)
3GPPr(m)=1√2(1−2⋅c(2m))+j1√2(1−2⋅c(2m+1))where c(n)is given by clause 5.2. The scrambling sequence generator shall be initialized at the start of each SS/PBCH block occasion with 11cell6cellinitSSBIDSSBID214121mod 4ciNiNwhere-for Lmax=4, SSBSSBhf4iinwhere nhfis the number of the half-frame in which the PBCH is transmitted in a frame with nhf=0for the first half-frame in the frame and nhf=1for the second half-frame in the frame, and iSSBis the two least significant bits of the candidate SS/PBCH block index as defined in [5, TS 38.213]-for Lmax>4, where iSSBis the three least significant bits of the candidate SS/PBCH block index as defined in [5, TS 38.213]with Lmaxbeing the maximum number of candidate SS/PBCH blocks in a half frame, as described in [5, TS 38.213]. 7.4.1.4.2Mapping to physical resourcesMapping to physical resources is described in clause 7.4.3.7.4.1.5CSI reference signals7.4.1.5.1GeneralZero-power (ZP) and non-zero-power (NZP) CSI-RS are defined-for a non-zero-power CSI-RS configured by the NZP-CSI-RS-ResourceIE or by the CSI-RS-Resource-Mobilityfield in the CSI-RS-ResourceConfigMobilityIE or by the TRS-ResourceSetIE, the sequence shall be generated according to clause 7.4.1.5.2 and mapped to resource elements according to clause 7.4.1.5.3-for a zero-power CSI-RS configured by the ZP-CSI-RS-ResourceIE, the UE shall assume that the resource elements defined in clause 7.4.1.5.3 are not used for PDSCH transmission subject to clause 5.1.4.2 of [6, TS 38.214]. The UE performs the same measurement/reception on channels/signals except PDSCH regardless of whether they collide with ZP CSI-RS or not. 7.4.1.5.2Sequence generationThe UE shall assume the reference-signal sequence r(m)is defined byr(m)=1√2(1−2⋅c(2m))+j1√2(1−2⋅c(2m+1))where the pseudo-random sequence c(i)is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialised withcinit=(210(Nsymbslotns,fμ+l+1)(2nID+1)+nID)mod 231at the start of each OFDM symbol where ns,fμis the slot number within a radio frame, lis the OFDM symbol number within a slot, and nIDequals the higher-layer parameter scramblingIDor sequenceGenerationConfig.7.4.1.5.3Mapping to physical resourcesFor each CSI-RS configured, the UE shall assume the sequence r(m)being mapped to resources elements (k ,l)p, μaccording to 3GPP TS 38.211 V18.4.0 (2024-09)151(Release 18)
3GPP ,...1,01for 21for RBscRBsc,tfCSIRS),(,fs,nXXlllkknNkNkknmmrlwkwanlplkwhen the following conditions are fulfilled:-the resource element (k ,l)p, μis within the resource blocks occupied by the CSI-RS resource for which the UE is configuredThe reference point for k=0is subcarrier 0 in common resource block 0.The value of ρis given by the higher-layer parameter densityin the CSI-RS-ResourceMappingIE or the CSI-RS-CellMobilityIE and the number of ports Xis given by the higher-layer parameter nrofPorts. For NZP CSI-RS configured by the TRS-ResourceSetIE, the density ρ=3and number of ports X=1.The UE is not expected to receive CSI-RS and DM-RS on the same resource elements.The UE shall assume βCSIRS>0for a non-zero-power CSI-RS where βCSIRSis selected such that the power offset specified by the higher-layer parameter powerControlOffsetSS in the NZP-CSI-RS-ResourceIE or in the TRS-ResourceSetIE, if provided, is fulfilled.The quantities k ', l', wf(k'), and wt(l')are given by Tables 7.4.1.5.3-1 to 7.4.1.5.3-5 where each (k ,l)in a given row of Table 7.4.1.5.3-1 corresponds to a CDM group of size 1 (no CDM) or size 2, 4, or 8. The CDM type is provided by the higher layer parameter cdm-Typein the CSI-RS-ResourceMappingIE. For NZP CSI-RS configured by the TRS-ResourceSetIE, the CDM type is 'noCDM'. The indices k 'and l'index resource elements within a CDM group.The time-domain locations l0∈{0,1,…,13}and l1∈{2,3,…,12}are provided by the higher-layer parameters firstOFDMSymbolInTimeDomainand firstOFDMSymbolInTimeDomain2, respectively, in the CSI-RS-ResourceMappingIE or the CSI-RS-ResourceConfigMobilityIE and defined relative to the start of a slot. For NZP CSI-RS configured by TRS-ResourceSetIE, the time-domain location l0∈{0,1,…,13}is provided by the higher-layer parameter firstOFDMSymbolInTimeDomainor firstOFDMSymbolInTimeDomain+4.The frequency-domain location is given by a bitmap provided by the higher-layer parameter frequencyDomainAllocationin the CSI-RS-ResourceMappingIE, the CSI-RS-ResourceConfigMobilityIE, or the TRS-ResourceSetIE, with the bitmap and value of kiin Table 7.4.1.5.3-1 given by-[b3⋯b0], ki−1=f(i)for row 1 of Table 7.4.1.5.3-1-[b11⋯b0], ki−1=f(i)for row 2 of Table 7.4.1.5.3-1-[b2⋯b0], ki−1=4f(i)for row 4 of Table 7.4.1.5.3-1-[b5⋯b0], ki−1=2f(i)for all other caseswhere f(i)is the bit number of the ithbit in the bitmap set to one, repeated across every ⌈1/ρ⌉of the resource blocks configured for CSI-RS reception by the UE. The starting position and number of the resource blocks in which the UE shall assume that CSI-RS is transmitted are given by the higher-layer parameters freqBand and densityin the CSI-RS-ResourceMappingIE for the bandwidth part given by the higher-layer parameter BWP-Idin the CSI-ResourceConfigIE or given by the higher-layer parameters nrofPRBsin the CSI-RS-CellMobilityIE where the the startPRBgiven by csi-rs-MeasurementBWis relative to common resource block 0.For NZP CSI-RS configured by 3GPP TS 38.211 V18.4.0 (2024-09)152(Release 18)
3GPPTRS-ResourceSetIE, the starting position and number of the resource blocks in which the CSI-RS can be transmitted are given by the higher-layer parameters nrofRBs, and startingRBin the TRS-ResourceSetIE, where startingRBis relative to common resource block 0 and the density ρ=3.The UE shall assume that a CSI-RS is transmitted using antenna ports pnumbered according top=3000+s+jL;j=0,1,..., N/L−1s=0,1,..., L−1;where sis the sequence index provided by Tables 7.4.1.5.3-2 to 7.4.1.5.3-5, L∈{1,2,4,8}is the CDM group size, and Nis the number of CSI-RS ports. The CDM group index jgiven in Table 7.4.1.5.3-1 corresponds to the time/frequency locations (¯k ,¯l)for a given row of the table. The CDM groups are numbered in order of increasing frequency domain allocation first and then increasing time domain allocation. For a CSI-RS resource configured as periodic or semi-persistent by the higher-layer parameter resourceType, configured by the higher-layer parameter CSI-RS-CellMobility, or configured by the higher-layer parameter TRS-ResourceSet, the UE shall assume that the CSI-RS is transmitted in slots satisfyingwhere the periodicity (in slots) and slot offset Toffsetare obtained from the higher-layer parameter CSI-ResourcePeriodicityAndOffset, slotConfig, periodicityAndOffset. The UE shall assume that CSI-RS is transmitted in a candidate slot as described in clause 11.1 of [5, TS 38.213], clause 10.4B of [5, TS 38.213]. The UE may assume that antenna ports within a CSI-RS resource are quasi co-located with QCL Type A, Type D (when applicable), and average gain.3GPP TS 38.211 V18.4.0 (2024-09)153(Release 18)
3GPPTable 7.4.1.5.3-3: The sequences wf(k')and wt(l')for cdm-Typeequal to 'fd-CDM2'.Index[wf(0)wf(1)]wt(0)0[+1+1]11[+1−1]1Table 7.4.1.5.3-4: The sequences wf(k')and wt(l')for cdm-Typeequal to 'cdm4-FD2-TD2'.Index[wf(0)wf(1)][wt(0)wt(1)]0[+1+1][+1+1]1[+1−1][+1+1]2[+1+1][+1−1]3[+1−1][+1−1]Table 7.4.1.5.3-5: The sequences wf(k')and wt(l')for cdm-Typeequal to 'cdm8-FD2-TD4'.Index[wf(0)wf(1)][wt(0)wt(1)wt(2)wt(30[+1+1][+1+1+1+1]1[+1−1][+1+1+1+1]2[+1+1][+1−1+1−1]3[+1−1][+1−1+1−1]4[+1+1][+1+1−1−1]5[+1−1][+1+1−1−1]6[+1+1][+1−1−1+1]7[+1−1][+1−1−1+1]7.4.1.6RIM reference signals7.4.1.6.1GeneralRIM-RS can be used by an gNB to measure inter-cell interference and to provide information about the experienced interference to other gNBs. Up to two different types of RIM-RS can be configured where -the first RIM-RS type can be used to convey information,-the second RIM-RS type depends on configuration only.7.4.1.6.2Sequence generationThe RIM-RS receiver shall assume the reference-signal sequence r(m)is defined byr(m)=1√2(1−2c(2m))+j1√2(1−2c(2m+1))where the pseudo-random sequence c(m)is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialised with cinit=(210f(ntRIM)+nSCID)mod 231where3GPP TS 38.211 V18.4.0 (2024-09)155(Release 18)
3GPP-nSCID∈{0,1,…,210−1}is given by clause 7.4.1.6.4.4; -f(ntRIM)=∑i=0202ic(i)where the pseudo-random sequence c(i)is given by clause 5.2.1, initialized with cinit(i)=(γ ntRIM+δ)mod 231where the multiplier factor γ∈{0,1,…,231−1}and the offset δ∈{0,1,…,231−1};-ntRIM=⌊(tRSRIM−trefRIM)/TperRIM⌋is the number of RIM-RS transmission periods since trefRIMwhere -tRSRIM−trefRIMis the time in seconds relative to trefRIMof 00:00:00 on 1 January 1900, calculated as continuous time without leap second and traceable to a common time reference, and-TperRIM=NslotPt/(1000⋅2μ)is the RIM-RS transmission periodicity in seconds assuming that the first RIM-RS transmission period starts at trefRIM, and where NslotPtis given by clause 7.4.1.6.4.2.7.4.1.6.3Mapping to physical resourcesThe RIM-RS receiver shall assume the reference signal being mapped to physical resources according toak(p,RIM)=βRIMr(k)k=0,1,…, LRIM−1where βRIMis an amplitude scaling factor in order to control the RIM-RS transmission power and pis the antenna port. Baseband signal generation shall be done according to clause 5.3.3.The starting position l0for RIM-RS type i∈{1,2}in slot ns,fμin a frame is given byl0=ToffsetUD,RIMmod Nsymbslotin slots satisfying(1024Nslotframe,μnfRIM+Nslotframe,μnfRIM+ns,fμ−(Toffset+⌊ToffsetUD,RIM/Nsymbslot⌋))mod NslotPt=0where-nfRIM∈{0,1,…, NslotPt/(1024Nslotframe,μ)−1}counts the number of times the SFN periods within the RIM-RS transmission period;-ToffsetUD,RIM=NrefUD,RIM−Nsymb,refRIM,iwhere NrefUD,RIM∈{2,3,…,20⋅2⋅14−1}is the symbol offset of the reference point after the starting boundary of the uplink-downlink switching period in which the RIM-RS is mapped to and Nsymb,refRIM, iis obtained as described in clause 7.4.1.6.4.2;-NslotPtis the total number of slots in a RIM-RS transmission period as defined in clause 7.4.1.6.4.2;-Toffsetis the slot offset of the uplink-downlink switching period with index itRIMwith respect to the starting boundary of the RIM-RS transmission period and is defined in clause 7.4.1.6.4.2;-Ptis the RIM-RS transmission periodicity in units of uplink-downlink switching period as defined in clause 7.4.1.6.4.2. 3GPP TS 38.211 V18.4.0 (2024-09)156(Release 18)
3GPP7.4.1.6.4RIM-RS configuration7.4.1.6.4.1GeneralA resource for RIM-RS transmission is defined by the indices itRIM∈{0,1,…, Pt−1}, ifRIM∈{0,1,…, NfRIM−1}, and isRIM∈{0,1,…, NsRIM,i−1}used as indices into configured lists of time, frequency, and sequence parameters, respectively.All RIM-RS resources occupy the same number of resource blocks, NRBRIM. At most 32 RIM-RS resources can be configured within a 10 ms period.7.4.1.6.4.2Time-domain parameters and mapping from itto time-domain parametersRIM-RS are transmitted periodically with the RIM-RS transmission period Ptdefined in units of the uplink-downlink switching period determined from one or two configured uplink-downlink periods. -If a single uplink-downlink period is configured for RIM-RS purposes, -Ptis the RIM-RS transmission periodicity in terms of uplink-downlink switching periods given byPt=⌈2μPtTper,1RIM1024Nslotframe, μ⌉1024Nslotframe, μ2μTper,1RIMwhere Tper,1RIM∈{0.5,0.625,1,1.25,2,2.5,4,5,10,20}ms;-NslotPt=2μPtTper,1RIMis the total number of slots in a RIM-RS transmission period;-Toffset=2μitRIMTper,1RIMis the slot offset of the uplink-downlink switching period with index itRIMwith respect to the starting boundary of the RIM-RS transmission period -If two uplink-downlink periods are configured for RIM-RS purposes, -Ptis the RIM-RS transmission periodicity in terms of Pt/2pairs of uplink-downlink switching periods and is given byPt=⌈2μPt(Tper,1RIM+Tper,2RIM)/21024Nslotframe, μ⌉1024Nslotframe, μ2μ(Tper,1RIM+Tper,2RIM)/2where each pair consists of a first period of Tper,1RIM∈{0.5,0.625,1,1.25,2,2.5,3,4,5,10,20}ms and a second period of Tper,2RIM∈{0.5,0.625,1,1.25,2,2.5,3,4,5,10}ms and where Tper,1RIM+Tper,2RIMdivides 20 ms;-NslotPt=2μPt(Tper,1RIM+Tper,2RIM)/2is the total number of slots in a RIM-RS transmission period;-Toffset=2μ⌊itRIM/2⌋(Tper,1RIM+Tper,2RIM)+2μ(itRIMmod 2)Tper,1RIMis the slot offset of the uplink-downlink switching period with index itRIMwith respect to the starting boundary of the RIM-RS transmission period The intermediate quantity Ptis given byPt={⌈NsetIDRIM,1NfRIMNsRIM,1⌉R1+⌈NsetIDRIM,2NfRIMNsRIM,2⌉R2if EnoughIndication is disabled⌈2NsetIDRIM,1NfRIMNsRIM,1⌉R1+⌈NsetIDRIM,2NfRIMNsRIM,2⌉R2if EnoughIndication is enabled3GPP TS 38.211 V18.4.0 (2024-09)157(Release 18)
3GPPwhere -NsetIDRIM,1and NsetIDRIM,2are the total number of setIDs for RIM-RS type 1 and RIM-RS type 2, respectively;-NfRIM∈{1,2,4}is the number of candidate frequency resources configured in the network;-NsRIM,i∈{1,2,…,8}is the number of candidate sequences assigned for RIM-RS type i∈{1,2}in the network;-R1and R2are the number of consecutive uplink-downlink switching periods for RIM-RS type 1 and RIM-RS type 2, respectively. If near-far functionality is not configured, Ri∈{1,2,4}, otherwise Ri∈{2,4,8}and the first and second half of the Riconsecutive uplink-downlink switching periods are for near functionality and far functionality, respectively.The quantity Nsymb,refRIM,iis obtained from entry rin a list of configured symbol offsets for RIM-RS i.7.4.1.6.4.3Frequency-domain parameters and mapping from ifto frequency-domain parametersThe frequency-domain parameter k1in clause 5.3.3 is the frequency offset relative to a configured reference point for RIM-RS and is obtained from entry ifRIMin a list of configured frequency offsets expressed in units of resource blocks. The number of candidate frequency resources configured in the network, NfRIM, shall fulfilNfRIM≤⌊Ngridsize, μNRBsc⋅2μ⋅1540⋅103⌋+⌊Ngridsize, μNRBsc⋅2μ⋅1580⋅103⌋+1If NfRIM>1, the frequency difference between any pair of configured frequency offsets in the list is not smaller than NRBRIM. The number of resource blocks for RIM-RS is given by NRBRIM=min(96, Ngrid,DLsize,μ)for μ=0NRBRIM∈{min(48, Ngrid,DLsize,μ),min(96, Ngrid,DLsize,μ)}for μ=17.4.1.6.4.4Sequence parameters and mapping from isto sequence parametersThe scrambling identity nSCIDclause 7.4.1.6.2 is obtained from entry isRIMin a list of configured scrambling identities.7.4.1.6.4.5Mapping between resource triplet and set IDThe resource indices itRIM, ifRIM, and isRIMare determined from the index rin the set ID nsetIDaccording toitRIM=Tstart+(⌊nsetIDNsRIM⌋mod NtRIM)Ri+rifRIM=(⌊nsetIDNtRIMNsRIM⌋mod NfRIM)isRIM=Sstart+(nsetIDmod NsRIM)where-NtRIMis given by3GPP TS 38.211 V18.4.0 (2024-09)158(Release 18)
3GPPNtRIM={⌈NsetIDRIM,1NfRIMNsRIM,1⌉for RIM-RS type 1 and if EnoughIndication is disabled⌈2NsetIDRIM,1NfRIMNsRIM,1⌉for RIM-RS type 1 and if EnoughIndication is enabled ⌈NsetIDRIM,2NfRIMNsRIM,2⌉for RIM-RS type 2 -NfRIM∈{1,2,4}is the number of candidate frequency resources configured in the network;-NsRIMis the number of sequence candidates for the current RIM-RS resource given byNsRIM={NsRIM,1for RIM-RS type 1 and if EnoughIndication is disabledNsRIM,1/2for RIM-RS type 1 and if EnoughIndication is enabled NsRIM,2for RIM-RS type 2 -Tstartis the starting time offset given byTstart={0for RIM-RS type 1⌈NsetIDRIM,1NfRIMNsRIM,1⌉R1for RIM-RS type 2 and if EnoughIndication is disabled ⌈2NsetIDRIM,1NfRIMNsRIM,1⌉R1for RIM-RS type 2 and if EnoughIndication is enabled -Sstartis given bySstart={NsRIM,1/2if EnoughIndication is enabled and 'enough mitigation' is to be indicated 0otherwisewhere NsRIM,1is the number of candidate sequences assigned for RIM-RS type 1-Riis the number of consecutive uplink-downlink periods for RIM-RS type ias given by clause 7.4.1.6.4.2;-r∈{0,1,…, Ri−1}.The set ID is determined from the resource triplet according tonsetID=(isRIM−Sstart)+NsRIM⌊itRIM−TstartRi⌋+NtRIMNsRIMifRIM7.4.1.7Positioning reference signals7.4.1.7.1GeneralA positioning frequency layer consists of one or more downlink PRS resource sets, each of which consists of one or more downlink PRS resources as described in [6, TS 38.214].7.4.1.7.2Sequence generationThe UE shall assume the reference-signal sequence r(m)is defined by3GPP TS 38.211 V18.4.0 (2024-09)159(Release 18)
3GPPr(m)=1√2(1−2c(2m))+j1√2(1−2c(2m+1))where the pseudo-random sequence c(i)is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialised withcinit=(222⌊nID,seqPRS1024⌋+210(Nsymbslotns,fμ+l+1)(2(nID,seqPRSmod 1024)+1)+(nID,seqPRSmod 1024))mod 231where ns,fμis the slot number, the downlink PRS sequence ID nID,seqPRS∈{0,1,…,4095}is given by the higher-layer parameter dl-PRS-SequenceID, and lis the OFDM symbol within the slot to which the sequence is mapped.7.4.1.7.3Mapping to physical resources in a downlink PRS resourceFor each downlink PRS resource configured, the UE shall assume the sequence r(m)is scaled with a factor βPRSand mapped to resources elements (k ,l)p, μaccording to ak ,l(p, μ)=βPRSr(m)m=0,1,…k=m KcombPRS+((koffsetPRS+k ')mod KcombPRS)l=lstartPRS,lstartPRS+1,…,lstartPRS+LPRS−1when the following conditions are fulfilled:-the resource element (k ,l)p, μis within the resource blocks occupied by the downlink PRS resource for which the UE is configured;-the symbol lis not used by any SS/PBCH block used by a serving cell for downlink PRS transmitted from the same serving cell or any SS/PBCH block from a non-serving cell whose time frequency location is provided to the UE by higher layers for downlink PRS transmitted from the same non-serving cell;-the slot number satisfies the conditions in clause 7.4.1.7.4.and where -the antenna port p=5000-lstartPRSis the first symbol of the downlink PRS within a slot and given by the higher-layer parameter dl-PRS-ResourceSymbolOffset;-the size of the downlink PRS resource in the time domain LPRS∈{1,2,4,6,12}is given by the higher-layer parameter dl-PRS-NumSymbols;-the comb size KcombPRS∈{2,4,6,12}is given by the higher-layer parameter dl-PRS-CombSizeN-AndReOffsetfor a downlink PRS resource configured for RTT-based propagation delay compensation, otherwise by the higher-layer parameter dl-PRS-CombSizeN such that the combination {LPRS, KcombPRS}is one of {1, 2}, {2, 2},{4, 2}, {6, 2}, {12, 2}, {1, 4}, {4, 4}, {12, 4}, {1, 6}, {6, 6}, {12, 6}, {1, 12} and {12, 12};-the resource-element offset koffsetPRS∈{0,1,…, KcombPRS−1}is obtained from the higher-layer parameter dl-PRS-CombSizeN-AndReOffset;-the quantity k 'is given by Table 7.4.1.7.3-1.If the downlink PRS resource is configured for RTT based propagation delay compensation as described in clause 9 of [6, TS 38.214], the reference point for k=0is subcarrier 0 in common resource block 0; Otherwise, the reference point for k=0is the location of the point A of the positioning frequency layer, in which the downlink PRS resource is configured where point A is given by the higher-layer parameter dl-PRS-PointA.3GPP TS 38.211 V18.4.0 (2024-09)160(Release 18)
3GPPTable 7.4.1.7.3-1: The frequency offset k 'as a function of l−lstartPRS.KcombPRSSymbol number within the downlink PRS resource l−lstartPRS0123456789101120101010101014021302130213603142503142512063917410285117.4.1.7.4Mapping to slots in a downlink PRS resource setFor a downlink PRS resource in a downlink PRS resource set, the UE shall assume the downlink PRS resource being transmitted when the slot and frame numbers fulfil(Nslotframe, μnf+ns,fμ−ToffsetPRS−Toffset,resPRS)mod TperPRS∈{iTgapPRS}i=0TrepPRS−1and one of the following conditions are fulfilled:-the higher-layer parameters dl-PRS-MutingOption1and dl-PRS-MutingOption2are not provided;-the higher-layer parameter dl-PRS-MutingOption1is provided with bitmap {b1}but dl-PRS-MutingOption2with bitmap {b2}is not provided, and bit bi1is set;-the higher-layer parameter dl-PRS-MutingOption2is provided with bitmap {b2}but dl-PRS-MutingOption1with bitmap {b1}is not provided, and bit bi2is set;-the higher-layer parameters dl-PRS-MutingOption1 with bitmap {b1}and dl-PRS-MutingOption2 with {b2}are both provided, and both bit bi1and bi2are set.where-bi1is bit i=⌊(Nslotframe, μnf+ns,fμ−ToffsetPRS−Toffset,resPRS)/(TmutingPRSTperPRS)⌋modLin the bitmap given by the higher-layer parameter dl-PRS-MutingOption1 where L∈{2,4,6,8,16,32}is the size of the bitmap; -bi2is bit i=⌊((Nslotframe, μnf+ns,fμ−ToffsetPRS−Toffset,resPRS)mod TperPRS)/TgapPRS⌋modTrepPRSin the bitmap given by the higher-layer parameter dl-PRS-MutingOption2;-the periodicity TperPRS∈2μ{4,5,8,10,16,20,32,40,64,80,160,320,640,1280,2560,5120,10240}and the slot offset ToffsetPRS∈{0,1,…,TperPRS−1}are given by the higher-layer parameter dl-PRS-Periodicity-and-ResourceSetSlotOffset;-the downlink PRS resource slot offset Toffset,resPRSis given by the higher-layer parameter dl-PRS-ResourceSlotOffset; -the repetition factor TrepPRS∈{1,2,4,6,8,16,32}is given by the higher-layer parameter dl-PRS-ResourceRepetitionFactor;-the muting repetition factor TmutingPRSis given by the higher-layer parameter dl-PRS-MutingBitRepetitionFactor;-the time gap TgapPRS∈{1,2,4,8,16,32}is given by the higher-layer parameter dl-PRS-ResourceTimeGap;For a downlink PRS resource in a downlink PRS resource set configured for RTT-based propagation delay compensation, the UE shall assume the downlink PRS resource being transmitted as described in clause 9 of [6, TS 3GPP TS 38.211 V18.4.0 (2024-09)161(Release 18)
3GPP38.214]; otherwise, the UE shall assume the downlink PRS resource being transmitted as described in clause 5.1.6.5 of [6, TS 38.214].7.4.2Synchronization signals7.4.2.1Physical-layer cell identitiesThere are 1008 unique physical-layer cell identities given byNIDcell=3NID(1)+NID(2)where NID(1)∈{0,1,…,335}and NID(2)∈{0,1,2}.7.4.2.2Primary synchronization signal7.4.2.2.1Sequence generationThe sequence dPSS(n)for the primary synchronization signal is defined by dPSS(n)=1−2x(m)m=(n+43NID(2))mod1270≤n<127wherex(i+7)=(x(i+4)+x(i))mod2and[x(6)x(5)x(4)x(3)x(2)x(1)x(0)]=[1110110]7.4.2.2.2Mapping to physical resourcesMapping to physical resources is described in clause 7.4.3.7.4.2.3Secondary synchronization signal7.4.2.3.1Sequence generationThe sequence dSSS(n)for the secondary synchronization signal is defined by dSSS(n)=[1−2x0((n+m0)mod127)][1−2x1((n+m1)mod127)]m0=15⌊NID(1)112⌋+5NID(2)m1=NID(1)mod1120≤n<127wherex0(i+7)=(x0(i+4)+x0(i))mod 2x1(i+7)=(x1(i+1)+x1(i))mod 2and[x0(6)x0(5)x0(4)x0(3)x0(2)x0(1)x0(0)]=[0000001][x1(6)x1(5)x1(4)x1(3)x1(2)x1(1)x1(0)]=[0000001]3GPP TS 38.211 V18.4.0 (2024-09)162(Release 18)
3GPP7.4.2.3.2Mapping to physical resourcesMapping to physical resources is described in clause 7.4.3.7.4.3SS/PBCH block 7.4.3.1Time-frequency structure of an SS/PBCH blockIn the time domain, an SS/PBCH block consists of 4 OFDM symbols, numbered in increasing order from 0 to 3 within the SS/PBCH block, where PSS, SSS, and PBCH with associated DM-RS are mapped to symbols as given by Table 7.4.3.1-1. In the frequency domain, an SS/PBCH block consists of 240 contiguous subcarriers with the subcarriers numbered in increasing order from 0 to 239 within the SS/PBCH block. The quantities kand lrepresent the frequency and time indices, respectively, within one SS/PBCH block. The UE may assume that the complex-valued symbols corresponding to resource elements denoted as 'Set to 0' in Table 7.4.3.1-1 are set to zero. The quantity vin Table 7.4.3.1-1 is given by v=NIDcellmod 4. The quantity kSSBis the subcarrier offset from subcarrier 0 in common resource block NCRBSSBto the lowest-numbered subcarrier of the SS/PBCH block, or the SS/PBCH block after puncturing if applicable, where NCRBSSBis obtained from the higher-layer parameter offsetToPointA. -For operation with shared spectrum channel access in FR2-2 and for operation without shared spectrum channel access, the 4 least significant bits of kSSBare given by the higher-layer parameter ssb-SubcarrierOffsetand for FR1 the most significant bit of kSSBis given by aA+5in the PBCH payload as defined in clause 7.1.1 of [4, TS 38.212]. -For operation with shared spectrum channel access in FR1, the 4 least significant bits of kSSBare given by the higher-layer parameter ssb-SubcarrierOffsetand the most significant bit of kSSBis given by aA+5in the PBCH payload as defined in clause 7.1.1 of [4, TS 38.212]. If kSSB≥24, kSSB=kSSB; otherwise, kSSB=2⌊kSSB/2⌋.If ssb-SubcarrierOffsetis not provided, kSSBis derived from the frequency difference between the SS/PBCH block and Point A.The UE may assume that the complex-valued symbols corresponding to resource elements that are part of a common resource block partially or fully overlapping with an SS/PBCH block, or an SS/PBCH block after puncturing if applicable,and not used for SS/PBCH transmission are set to zero in the OFDM symbols partially or fully overlapping with OFDM symbols where SS/PBCH is transmitted. For an SS/PBCH block, the UE shall assume -antenna port p=4000is used for transmission of PSS, SSS, PBCH and DM-RS for PBCH,-the same cyclic prefix length and subcarrier spacing for the PSS, SSS, PBCH and DM-RS for PBCH,-for SS/PBCH block type A, μ∈{0,1}and kSSB∈{0,1,2,…,23}with the quantities kSSB, and NCRBSSBexpressed in terms of 15 kHz subcarrier spacing, and-for SS/PBCH block type B in FR2-1 and FR2-NTN, μ∈{3,4}and kSSB∈{0,1,2,…,11}with the quantity kSSBexpressed in terms of the subcarrier spacing provided by the higher-layer parameter subCarrierSpacingCommonand NCRBSSBexpressed in terms of 60 kHz subcarrier spacing; -for SS/PBCH block type B in FR2-2, μ∈{3,5,6}and kSSB∈{0,1,2,…,11}with the quantity kSSBexpressed in terms of the SS/PBCH block subcarrier spacing and NCRBSSBexpressed in terms of 60 kHz subcarrier spacing; -the centre of subcarrier 0 of resource block NCRBSSBcoincides with the centre of subcarrier 0 of a common resource block with the subcarrier spacing 3GPP TS 38.211 V18.4.0 (2024-09)163(Release 18)
3GPP-provided by the higher-layer parameter subCarrierSpacingCommon for operation without shared spectrum channel access in FR1, FR2-1 and FR2-NTN; and -same as the subcarrier spacing of the SS/PBCH block for operation without shared spectrum access in FR2-2 and for operation with shared spectrum channel access. -This common resource block overlaps with subcarrier 0 of the lowest-numbered resource block of the SS/PBCH block, or the SS/PBCH block after puncturing if applicable.The UE may assume that SS/PBCH blocks transmitted with the same block index on the same center frequency location are quasi co-located with respect to Doppler spread, Doppler shift, average gain, average delay, delay spread, and, when applicable, spatial Rx parameters. The UE shall not assume quasi co-location for any other SS/PBCH block transmissions other than what is specified in [5, TS 38.213].For cell search on a carrier with a channel bandwidth of 3 MHz, the UE is not expected to receive subcarriers 0 to 47 and 192 to 239 in any of the 4 OFDM symbols of the SS/PBCH block, where the remaining 12 resource blocks form the SS/PBCH block after puncturing.Table 7.4.3.1-1: Resources within an SS/PBCH block for PSS, SSS, PBCH, and DM-RS for PBCH. Channel or signalOFDM symbol number lrelative to the start of an SS/PBCH blockSubcarrier number krelative to the start of an SS/PBCH blockPSS056, 57, …, 182SSS256, 57, …, 182Set to 000, 1, …, 55, 183, 184, …, 239248, 49, …, 55, 183, 184, …, 191PBCH1, 30, 1, …, 23920, 1, …, 47, 192, 193, …, 239DM-RS for PBCH1, 30+v ,4+v ,8+v ,...,236+v20+v ,4+v ,8+v ,...,44+v192+v ,196+v ,...,236+v7.4.3.1.1Mapping of PSS within an SS/PBCH blockThe UE shall assume the sequence of symbols dPSS(0),...,dPSS(126)constituting the primary synchronization signal to be scaled by a factor βPSSto conform to the PSS power allocation specified in [5, TS 38.213] and mapped to resource elements (k ,l)p, μin increasing order of kwhere kand lare given by Table 7.4.3.1-1 and represent the frequency and time indices, respectively, within one SS/PBCH block.7.4.3.1.2Mapping of SSS within an SS/PBCH blockThe UE shall assume the sequence of symbols dSSS(0),...,dSSS(126)constituting the secondary synchronization signal to be scaled by a factor β`SSSand mapped to resource elements (k ,l)p, μin increasing order of kwhere kand lare given by Table 7.4.3.1-1 and represent the frequency and time indices, respectively, within one SS/PBCH block.7.4.3.1.3Mapping of PBCH and DM-RS within an SS/PBCH blockThe UE shall assume the sequence of complex-valued symbols dPBCH(0),…,dPBCH(Msymb−1)constituting the physical broadcast channel to be scaled by a factor β`PBCHto conform to the PBCH power allocation specified in [5, TS 38.213] and mapped in sequence starting with dPBCH(0)to resource elements (k ,l)p, μwhich meet all the following criteria:-they are not used for PBCH demodulation reference signals3GPP TS 38.211 V18.4.0 (2024-09)164(Release 18)
3GPPThe mapping to resource elements (k ,l)p, μnot reserved for PBCH DM-RS shall be in increasing order of first the index kand then the index l, where kand lrepresent the frequency and time indices, respectively, within one SS/PBCH block and are given by Table 7.4.3.1-1.The UE shall assume the sequence of complex-valued symbols r(0),...,r(143)constituting the demodulation reference signals for the SS/PBCH block to be scaled by a factor of βPBCHDM-RSto conform to the PBCH power allocation specified in [5, TS 38.213] and to be mapped to resource elements (k ,l)p, μin increasing order of first kand then lwhere kand lare given by Table 7.4.3.1-1 and represent the frequency and time indices, respectively, within one SS/PBCH block.7.4.3.2Time location of an SS/PBCH blockThe locations in the time domain where a UE shall monitor for a possible SS/PBCH block are described in clause 4.1 of [5, TS 38.213].8Sidelink8.1Overview8.1.1Overview of physical channelsA sidelink physical channel corresponds to a set of resource elements carrying information originating from higher layers. The following sidelink physical channels are defined:-Physical Sidelink Shared Channel, PSSCH-Physical Sidelink Broadcast Channel, PSBCH-Physical Sidelink Control Channel, PSCCH-Physical Sidelink Feedback Channel, PSFCH8.1.2Overview of physical signalsA sidelink physical signal corresponds to a set of resource elements used by the physical layer but does not carry information originating from higher layers. The following sidelink physical signals are defined:-Demodulation reference signals, DM-RS-Channel-state information reference signal, CSI-RS-Phase-tracking reference signals, PT-RS-Sidelink primary synchronization signal, S-PSS-Sidelink secondary synchronization signal, S-SSS-Sidelink positioning reference signal, SL PRS8.2Physical resources8.2.1GeneralIn a shared SL PRS resource pool, the OFDM symbol immediately preceding the symbols which are configured for use by PSFCH if PSFCH is configured in this slot, and the last symbol configured for sidelink in a slot, serve as guard symbol(s). In a dedicated SL PRS resource pool, the last symbol configured for sidelink in a slot serves as a guard symbol. Otherwise, the OFDM symbol immediately following the last symbol used for PSSCH, PSFCH, or S-SSB serves as a guard symbol. 3GPP TS 38.211 V18.4.0 (2024-09)165(Release 18)
3GPPThe first OFDM symbol of a PSSCH and its associated PSCCH is duplicated as described in clauses 8.3.1.5 and 8.3.2.3. The first OFDM symbol of a PSFCH is duplicated as described in clause 8.3.4.2.2.The OFDM symbol immediately preceding an SL PRS resource in a dedicated SL PRS resource pool is generated as described in clause 8.4.1.6.3.8.2.2NumerologiesMultiple OFDM numerologies are supported as given by Table 8.2.2-1 where μand the cyclic prefix for a sidelink bandwidth part are obtained from the higher-layer parameter sl-BWP. Table 8.2.2-1: Supported transmission numerologies.μΔ f=2μ∙15[kHz]Cyclic prefix015Normal130Normal260Normal, Extended3120Normal8.2.3Frame structure8.2.3.1Frames and subframesThe frame and subframe structure for sidelink transmission is defined in clause 4.3.1.8.2.3.2SlotsThe slot structure for sidelink transmission is defined in clause 4.3.2.8.2.4Antenna portsAn antenna port is defined in clause 4.4.1. The following antenna ports are defined for the sidelink:-Antenna ports starting with 1000 for PSSCH-Antenna ports starting with 2000 for PSCCH-Antenna ports starting with 3000 for CSI-RS-Antenna ports starting with 4000 for S-SS/PSBCH block-Antenna ports starting with 5000 for PSFCH-Antenna ports starting with 6000 for SL PRSFor DM-RS associated with a PSBCH, the channel over which a PSBCH symbol on one antenna port is conveyed can be inferred from the channel over which a DM-RS symbol on the same antenna port is conveyed only if the two symbols are within a S-SS/PSBCH block transmitted within the same slot, and with the same block index according to clause 8.4.3.1. For DM-RS associated with a PSSCH, the channel over which a PSSCH symbol on one antenna port is conveyed can be inferred from the channel over which a DM-RS symbol on the same antenna port is conveyed only if the two symbols are within the same frequency resource as the scheduled PSSCH and in the same slot. For DM-RS associated with a PSCCH, the channel over which a PSCCH symbol on one antenna port is conveyed can be inferred from the channel over which a DM-RS symbol on the same antenna port is conveyed only if the two symbols are within the same frequency resource as the transmitted PSCCH and in the same slot.8.2.5Resource gridThe resource grid for sidelink transmission is defined in clause 4.4.2.3GPP TS 38.211 V18.4.0 (2024-09)166(Release 18)
3GPPFor sidelink, the carrier bandwidth Ngridsize, μand the starting position Ngridstart, μfor subcarrier spacing configuration μare obtained from the higher-layer parameter sl-SCS-SpecificCarrierList. For the sidelink, the higher-layer parameter sl-TxDirectCurrentLocationindicates the location of the transmitter DC subcarrier in the sidelink for each of the configured bandwidth parts. Values in the range 0 – 3299 represent the number of the DC subcarrier, the value 3300 indicates that the DC subcarrier is located outside the resource grid, and the value 3301 indicates that the position of the DC subcarrier in the sidelink is undetermined. The DC subcarrier location offset relative to the center of the indicated subcarrier is given by 7.5+5NkHzif frequencyShift7p5khzSLis provided and by 5NkHzotherwise, where N∈{−1,0,1}is given by the higher-layer parameter valueN.8.2.6Resource elementsResource elements are defined in clause 4.4.3.8.2.7Resource blocksResource blocks are defined in clause 4.4.4.Point A for sidelink transmission/reception is obtained from the higher-layer parameter sl-AbsoluteFrequencyPointA.8.2.8Bandwidth partConfiguration of the single bandwidth part for sidelink transmission is described in clause 16 of [5, TS 38.213].8.3Physical channels8.3.1Physical sidelink shared channel8.3.1.1ScramblingFor the single codeword q=0, the block of bits b(q)(0),…,b(q)(Mbit(q)−1), where Mbit(q)=Mbit,SCI2(q)+Mbit,data(q)is the number of bits in codeword qtransmitted on the physical channel as defined in [4, TS 38.212], shall be scrambled prior to modulation.Scrambling shall be done according to the following pseudo codeset i=0set j=0while i<Mbit(q)if b(q)(i)=x// SCI placeholder bits~b(q)(i)=~b(q)(i−2)j=j+1else~b(q)(i)=(b(q)(i)+c(q)(i−~Mi, j(q)))mod 2end if i= i+ 1end whilewhere the scrambling sequence c(q)(i)is given by clause 5.2.1 and3GPP TS 38.211 V18.4.0 (2024-09)167(Release 18)
3GPP-for 0≤i<Mbit,SCI2(q)-~Mi, j(q)=j-The scrambling sequence generator shall be initialized withcinit=215NID+1010where NID=NIDXmod216and the quantity NIDXequals the decimal representation of the CRC on the PSCCH associated with the PSSCH according to NIDX=∑i=0L−1pi∙2L−1−iwith pand Lgiven by clause 8.3.2 in [4, TS 38.212].-for Mbit,SCI2(q)≤i<Mbit(q)-~Mi, j(q)=Mbit,SCI2(q)-The scrambling sequence generator shall be initialized withcinit=215NID+1010where NID=NIDXmod216and the quantity NIDXequals the decimal representation of the CRC on the PSCCH associated with the PSSCH according to NIDX=∑i=0L−1pi∙2L−1−iwith pand Lgiven by clause 8.3.2 in [4, TS 38.212].8.3.1.2ModulationFor the single codeword q=0, the block of scrambled bits shall be modulated, resulting in a block of complex-valued modulation symbols d(q)(0),…,d(q)(Msymb(q)−1)where Msymb(q)=Msymb,1(q)+Msymb,2(q).Modulation for 0≤i<Mbit,SCI2(q)shall be done as described in clause 5.1 using QPSK, where Msymb,1(q)=Mbit,SCI2(q)/2.Modulation for Mbit,SCI2(q)≤i<Mbit(q)shall be done as described in clause 5.1 using one of the modulation schemes in Table 8.3.1.2-1 where Msymb,2(q)=Mbit,data(q)/Qm.Table 8.3.1.2-1: Supported modulation schemes.Modulation schemeModulation order QmQPSK216QAM464QAM6256QAM88.3.1.3Layer mappingLayer mapping shall be done according to clause 7.3.1.3 with the number of layers υ∈{1,2}, resulting in x(i)=[x(0)(i)…x(υ−1)(i)]T, i=0,1,…, Msymblayer−1.8.3.1.4PrecodingThe block of vectors [x(0)(i)…x(υ−1)(i)]Tshall be precoded according to clasue 6.3.1.5 where the precoding matrix Wequals the identity matrix and Msymbap=Msymblayer.3GPP TS 38.211 V18.4.0 (2024-09)168(Release 18)
3GPP8.3.1.5Mapping to virtual resource blocksFor each of the antenna ports used for transmission of the PSSCH, the block of complex-valued symbols z(p)(0),…, z(p)(Msymbap−1)shall be multiplied with the amplitude scaling factor βDMRSPSSCHin order to conform to the transmit power specified in [5, TS 38.213] and mapped to resource elements (k ' ,l)p, μin the virtual resource blocks assigned for transmission, where k'=0is the first subcarrier in the lowest-numbered virtual resource block assigned for transmission.The mapping operation shall be done in two steps:-first, the complex-valued symbols corresponding to the bit for the 2nd-stage SCI in increasing order of first the index k 'over the assigned virtual resource blocks and then the index l, starting from the first PSSCH symbol carrying an associated DM-RS and meeting all of the following criteria:-the corresponding resource elements in the corresponding physical resource blocks are not used for transmission of the associated DM-RS, PT-RS, or PSCCH;-secondly, the complex-valued modulation symbols not corresponding to the 2nd-stage SCI shall be in increasing order of first the index k 'over the assigned virtual resource blocks, and then the index lwith the starting position given by [6, TS 38.214] and meeting all of the following criteria:-the resource elements are not used for 2nd-stage SCI in the first step; -the resource elements are not in the LSL-PRSsymbols used for transmission of the associated SL PRS according to clause 8.2.4.1.1 of [6, TS 38.214];-the corresponding resource elements in the corresponding physical resource blocks are not used for transmission of the associated DM-RS, PT-RS, CSI-RS, or PSCCH.The resource elements used for the PSSCH in the first OFDM symbol in the mapping operation above, including any DM-RS, PT-RS, or CSI-RS occurring in the first OFDM symbol, shall be duplicated in the OFDM symbol immediately preceding the first OFDM symbol in the mapping.8.3.1.6Mapping from virtual to physical resource blocksVirtual resource blocks shall be mapped to physical resource blocks according to non-interleaved mapping.For non-interleaved VRB-to-PRB mapping, virtual resource block nis mapped to physical resource block n.8.3.2Physical sidelink control channel8.3.2.1ScramblingThe block of bits b(0),…,b(Mbit−1), where Mbitis the number of bits transmitted on the physical channel, shall be scrambled prior to modulation, resulting in a block of scrambled bits ~b(0),…,~b(Mbit−1)according to~b(i)=(b(i)+c(i))mod 2where the scrambling sequence c(i)is given by clause 5.2.1. The scrambling sequence generator shall be initialized with cinit=10108.3.2.2ModulationThe block of scrambled bits ~b(0),…,~b(Mbit−1)shall be modulated as described in clause 5.1 using QPSK, resulting in a block of complex-valued modulation symbols d(0),…,d(Msymb−1)where Msymb=Mbit/2. 3GPP TS 38.211 V18.4.0 (2024-09)169(Release 18)
3GPP8.3.2.3Mapping to physical resourcesThe set of complex-valued modulation symbols d(0),…,d(Msymb−1)shall be multiplied with the amplitude scaling factor βDMRSPSCCHin order to conform to the transmit power specified in [5, TS 38.213] and mapped in sequence starting with d(0)to resource elements (k ,l)p, μassigned for transmission according to clause 16.4 of [5, TS 38.213], and not used for the demodulation reference signals associated with PSCCH, in increasing order of first the index kover the assigned physical resources, and then the index lon antenna portp=2000. The resource elements used for the PSCCH in the first OFDM symbol in the mapping operation above, including any DM-RS, PT-RS, or CSI-RS occurring in the first OFDM symbol, shall be duplicated in the immediately preceding OFDM symbol.8.3.3Physical sidelink broadcast channel8.3.3.1ScramblingThe block of bitsb(0),…,b(Mbit−1), where Mbitis the number of bits transmitted on the physical sidelink broadcast channel, shall be scrambled prior to modulation, resulting in a block of scrambled bits ~b(0),…,~b(Mbit−1)according to~b(i)=(b(i)+c(i))mod 2where the scrambling sequence c(i)is given by clause 5.2.1. The scrambling sequence generator shall be initialized with cinit=NIDSLat the start of each S-SS/PSBCH block.8.3.3.2ModulationThe block of bits ~b(0),…,~b(Mbit−1)shall be QPSK modulated as described in clause 5.1.3, resulting in a block of complex-valued modulation symbols dPSBCH(0),…,dPSBCH(Msymb−1)where Msymb=Mbit/2. 8.3.3.3Mapping to physical resourcesMapping to physical resources is described in clause 8.4.3.8.3.4Physical sidelink feedback channel8.3.4.1General8.3.4.2PSFCH format 08.3.4.2.1Sequence generationThe sequence x(n)shall be generated according tox(n)=ru,vα ,δ(n)n=0,1,…, NscRB−1where ru,v(α ,δ)(n)is given by clause 6.3.2.2 with the following exceptions:-mcsis given by clause 16.3 of [5, TS 38.213]; -m0is given by clause 16.3 of [5, TS 38.213];-m∫¿¿is given by3GPP TS 38.211 V18.4.0 (2024-09)170(Release 18)
3GPP-m∫¿=5nIRBμ¿if the higher-layer parameter sl-TransmissionStructureForPSFCHis configured and set to 'dedicatedInterlace' and where nIRBμis the resource block number within the interlace;-m∫¿=0¿otherwise-l=0;-l'is the index of the OFDM symbol in the slot that corresponds to the second OFDM symbol of the PSFCH transmission in the slot given by [5, TS 38.213];-u=nIDmod 30and v=0with nIDgiven by the higher-layer parameter sl-PSFCH-HopIDif configured; otherwise, u=0.-cinit=nIDwith nIDgiven by the higher-layer parameter sl-PSFCH-HopIDif configured; otherwise, cinit=0.8.3.4.2.2Mapping to physical resourcesThe sequence x(n)shall be multiplied with the amplitude scaling factor βPSFCHin order to conform to the transmit power specified in [5, TS 38.213] and mapped in sequence starting with x(0)to resource elements (k ,l)p, μassigned for transmission of the second PSFCH symbol according to clause 16.3 of [5, TS 38.213] in increasing order of the index kover the assigned physical resources on antenna portp=5000. The resource elements used for the PSFCH in the OFDM symbol in the mapping operation above shall be duplicated in the immediately preceding OFDM symbol.If the higher-layer parameter sl-TransmissionStructureForPSFCHis configured and set to 'dedicatedInterlace', the mapping operation shall be repeated for each resource block in the interlace and in the RB set over the assigned physical resource blocks according to clause 16.3 of [5, TS 38.213], with the resource-block dependent sequence generated according to clause 8.3.4.2.1.If the higher-layer parameter sl-TransmissionStructureForPSFCHis configured and set to 'commonInterlace', the mapping operation shall be repeated for each resource block assigned for transmission of the common interlace and for PSFCH transmission with HARQ-ACK information over the assigned physical resource according to clause 16.3 of [5, TS 38.213], with the resource-block dependent sequence generated according to clause 8.3.4.2.1, where the cyclic shift αon each resource block assigned for transmission of the common interlace is up to UE implementation.8.4Physical signals8.4.1Reference signals8.4.1.1Demodulation reference signals for PSSCH8.4.1.1.1Sequence generationThe sequence rl(m)shall be generated according torl(m)=1√2(1−2c(2m))+j1√2(1−2c(2m+1))where the pseudo-random sequence c(m)is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialized withcinit=(217(Nsymbslotns,fμ+l+1)(2NID+1)+2NID)mod 2313GPP TS 38.211 V18.4.0 (2024-09)171(Release 18)
3GPPwhere lis the OFDM symbol number within the slot, ns,fμis the slot number within a frame, and NID=NIDXmod216where the quantity NIDXequals the decimal representation of CRC on the PSCCH associated with the PSSCH according to NIDX=∑i=0L−1pi∙2L−1−iwith pand Lgiven by clause 7.3.2 in [4, TS 38.212].8.4.1.1.2Mapping to physical resourcesThe sequence r(m)shall be mapped to the intermediate quantity ~ak ,l(~pj, μ)according to clause 6.4.1.1.3 using configuration type 1 without transform precoding, and where wf(k '), wt(l'), and Δare given by Table 8.4.1.1.2-2, and r(m)is specified in clause 8.4.1.1.1.The patterns used for the PSSCH DM-RS is indicated in the SCI as described in clause 8.3.1.1 of [4, TS 38.212].The intermediate quantity ~ak ,l(~pj, μ)shall be precoded, multiplied with the amplitude scaling factor βDMRSPSSCHspecified in clause 8.3.1.5, and mapped to physical resources according to[ak ,l(p0, μ)⋮ak ,l(pρ−1, μ)]=βDMRSPSSCHW[~ak ,l(~p0, μ)⋮~ak ,l(~pυ−1, μ)]where -the precoding matrix Wis given by clause 8.3.1.4, -the set of antenna ports {p0,…, pρ−1}is given by clause 8.3.1.4, and-the set of antenna ports {~p0,…,~pυ−1}is given by [6, TS 38.214];and the following conditions are fulfilled:-the resource elements ~ak ,l(~pj, μ)are within the common resource blocks allocated for PSSCH transmission.The quantity kis defined relative to subcarrier 0 in common resource block 0 and the quantity lis defined relative to the start of the scheduled resources for transmission of PSSCH and the associated PSCCH, including the OFDM symbol duplicated as described in clauses 8.3.1.5 and 8.3.2.3.The position(s) of the DM-RS symbols is given by laccording to Table 8.4.1.1.2-1 where the number of PSSCH DM-RS is indicated in the SCI, and ldis the duration of the scheduled resources for transmission of PSSCH according to clause 8.1.2.1 of [6, TS 38.214] and the associated PSCCH, including the OFDM symbol duplicated as described in clauses 8.3.1.5 and 8.3.2.3.Table 8.4.1.1.2-1: PSSCH DM-RS time-domain location.ldin symbolsDM-RS position lPSCCH duration 2 symbolsPSCCH duration 3 symbolsNumber of PSSCH DM-RSNumber of PSSCH DM-RS23423461, 51, 571, 51, 581, 51, 593, 81, 4, 74, 81, 4, 7103, 81, 4, 74, 81, 4, 7113, 101, 5, 91, 4, 7, 104, 101, 5, 91, 4, 7, 10123, 101, 5, 91, 4, 7, 104, 101, 5, 91, 4, 7, 10133, 101, 6, 111, 4, 7, 104, 101, 6, 111, 4, 7, 103GPP TS 38.211 V18.4.0 (2024-09)172(Release 18)
3GPPTable 8.4.1.1.2-2: Parameters for PSSCH DM-RS.pCDM group λ∆wf(k ')wt(l')k'=0k'=1l'=0100000+1+1+1100100+1-1+18.4.1.2Phase-tracking reference signals for PSSCH8.4.1.2.1Sequence generation The precoded sidelink phase-tracking reference signal for subcarrier kon layer jis given byr(~pj)(m)=¿where-antenna ports ~pj'or {~pj',~pj' '}associated with PT-RS transmission are given by clause 8.2.3 of [6, TS 38.214];-r(m)is given by clause 8.4.1.1.1 at the position of the first PSSCH symbol carrying an associated DM-RS.8.4.1.2.2Mapping to physical resourcesThe UE shall transmit phase-tracking reference signals only in the resource blocks used for the PSSCH, and only if the procedure in [6, TS 38.214] indicates that phase-tracking reference signals are being used.The PSSCH PT-RS shall be mapped to resource elements according to[ak ,l(po, μ)⋮ak ,l(pρ−1, μ)]=βDMRSPSSCHW[r(~p0)(2n+k ')⋮r(~pυ−1)(2n+k ')]k=4n+2k'+Δwhen all the following conditions are fulfilled-lis within the OFDM symbols allocated for the PSSCH transmission;-resource element (k ,l)is not used for PSCCH, nor DM-RS associated with PSSCH;-k 'and Δcorrespond to ~p0,…,~pυ−1The precoding matrix Wis given by clause 8.3.1.4. The set of time indices l defined relative to the start of the PSSCH allocation is defined by1. set i=0and lref=02. if any symbol in the interval max(lref+(i−1)LPT-RS+1,lref),…,lref+i LPT-RSoverlaps with a symbol used for DM-RS according to clause 8.4.1.1.2-set i=1-set lrefto the symbol index of the DM-RS symbol-repeat from step 2 as long as lref+i LPT-RSis inside the PSSCH allocation3. add lref+i LPT-RSto the set of time indices for PT-RS3GPP TS 38.211 V18.4.0 (2024-09)173(Release 18)
3GPP4. increment iby one5. repeat from step 2 above as long as lref+i LPT-RSis inside the PSSCH allocationwhere LPT-RS∈{1,2,4}is given by clause 8.4.3 of [6, TS 38.214].For the purpose of PT-RS mapping, the resource blocks allocated for PSSCH transmission are numbered from 0 to NRB−1from the lowest scheduled resource block to the highest. The corresponding subcarriers in this set of resource blocks are numbered in increasing order starting from the lowest frequency from 0 to NscRBNRB−1. The subcarriers to which the PT-RS shall be mapped are given byk=krefRE+(i KPT-RS+krefRB)NscRBkrefRB={NIDmod KPT-RSifNRBmod KPT-RS=0NIDmod (NRBmod KPT-RS)otherwisewhere-i=0,1,2,…-krefREis given by Table 8.4.1.2.2-1 for the DM-RS port associated with the PT-RS port according to clause 8.2.3 in [6, TS 38.214]. -NRBis the number of resource blocks scheduled;-KPT-RS∈{2,4}is given by [6, TS 38.214];-NID=NIDXmod216where the quantity NIDXequals the decimal representation of CRC on the PSCCH associated with the PSSCH according to NIDX=∑i=0L−1pi∙2L−1−iwith pand Lgiven by clause 7.3.2 in [4, TS 38.212].PSSCH PT-RS shall not be mapped to resource elements containing PSCCH or PSCCH DMRS by puncturing PSSCH PT-RS.A UE is not expected to receive sidelink CSI-RS and PSSCH PT-RS on the same resource elements.Table 8.4.1.2.2-1: The parameter krefRE.DM-RS antenna portkrefRE~presourceElementOffsetoffset00offset01offset10offset11002681248108.4.1.3Demodulation reference signals for PSCCH8.4.1.3.1Sequence generationThe sequence rl(m)shall be generated according torl(m)=1√2(1−2c(2m))+j1√2(1−2c(2m+1))where the pseudo-random sequence c(m)is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialized with3GPP TS 38.211 V18.4.0 (2024-09)174(Release 18)
3GPPcinit=(217(Nsymbslotns,fμ+l+1)(2NID+1)+2NID)mod231where -lis the OFDM symbol number within the slot, -ns,fμis the slot number within a frame, and-NID∈{0,1,…,65535}is given by the higher-layer parameter sl-DMRS-ScrambleID.8.4.1.3.2Mapping to physical resourcesThe sequence rl(m)shall be multiplied with the amplitude scaling factor βDMRSPSCCHin order to conform to the transmit power specified in [5, 38.213] and mapped in sequence starting with rl(0)to resource elements (k ,l)p, μin a slot on antenna port p=2000according toak ,l(p, μ)=βDMRSPSCCHwf,i(k ')rl(3n+k ')k=n NscRB+4k'+1k'=0,1,2n=0,1,…where the following conditions are fulfilled-they are within the resource elements constituting the PSCCH The quantity wf,i(k ')is given by Table 8.4.1.3.2-1 and i∈{0,1,2}shall be randomly selected by the UE.The reference point for kis subcarrier 0 in common resource block 0.The quantity lis the OFDM symbol number within the slot. Table 8.4.1.3.2-1: The quantity wf,i(k ').k 'wf ,i(k ')i=0i=1i=2011111ej2/3πe−j2/3π21e−j2/3πej2/3π8.4.1.4Demodulation reference signals for PSBCH8.4.1.4.1Sequence generationThe reference-signal sequence r(m)for an S-SS/PSBCH block is defined byr(m)=1√2(1−2c(2m))+j1√2(1−2c(2m+1))where c(n)is given by clause 5.2. The scrambling sequence generator shall be initialized at the start of each S-SS/PSBCH block occasion with cinit=NIDSL8.4.1.4.2Mapping to physical resourcesMapping to physical resources is described in clause 8.4.3.3GPP TS 38.211 V18.4.0 (2024-09)175(Release 18)
3GPP8.4.1.5CSI reference signals8.4.1.5.1General8.4.1.5.2Sequence generationThe sequence r(m)shall be generated according tor(m)=1√2(1−2c(2m))+j1√2(1−2c(2m+1))where the pseudo-random sequence c(i)is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialised withcinit=(210(Nsymbslotns,fμ+l+1)(2nID+1)+nID)mod 231at the start of each OFDM symbol where ns,fμis the slot number within a radio frame, lis the OFDM symbol number within a slot, and nID=NIDXmod210where the quantity NIDXequals the decimal representation of CRC for the sidelink control information mapped to the PSCCH associated with the CSI-RS according to NIDX=∑i=0L−1pi∙2L−1−iwith pand Lgiven by clause 7.3.2 in [4, TS 38.212].8.4.1.5.3Mapping to physical resourcesMapping to resource elements shall be done according to clause 7.4.1.5.3 with the following exceptions:-only 1 and 2 antenna ports are supported, X∈{1,2};-only density ρ=1is supported;-zero-power CSI-RS is not supported; -the quantity βCSIRSis an amplitude scaling factor to conform with the transmit power specified in clause 8.2.1 of [6, TS 38.214].8.4.1.6Positioning reference signals8.4.1.6.1GeneralA SL PRS resource refers to a time-frequency resource within a slot, used for SL PRS transmission.8.4.1.6.2Sequence generationThe sequence r(m)is defined byr(m)=1√2(1−2c(2m))+j1√2(1−2c(2m+1))where the pseudo-random sequence c(i)is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialised withcinit=(222⌊nID,seqSL-PRS1024⌋+210(Nsymbslotns,fμ+l+1)(2(nID,seqSL-PRSmod 1024)+1)+(nID,seqSL-PRSmod 1024))mod 231where-ns,fμis the slot number within the radio frame3GPP TS 38.211 V18.4.0 (2024-09)176(Release 18)
3GPP-lis the OFDM symbol number within the slot to which the sequence is mapped-nID,seqSL-PRS∈{0,1,…,4095}is the sidelink PRS sequence ID, which, if not provided by higher layers, is obtained from the decimal representation of the CRC for the sidelink control information mapped to the PSCCH associated with the SL PRS according to nID,seqSL-PRS=(∑i=0L−1pi∙2L−1−i)mod212with pand Lgiven by clause 7.3.2 in [4, TS 38.212].8.4.1.6.3Mapping to physical resourcesThe sequence shall be multiplied with the amplitude scaling factor βSL-PRSin order to conform to the transmit power specified in [5, TS 38.213] and mapped to resources elements (k ,l)p, μaccording to ak ,l(p, μ)=βSL-PRSr(m)m=0,1,…k=m KcombSL-PRS+((koffsetSL-PRS+k ')mod KcombSL-PRS)l=lstartSL-PRS,lstartSL-PRS+1,…,lstartSL-PRS+LSL-PRS−1when the following conditions are fulfilled:-the resource element (k ,l)p, μis within the common resource blocks occupied by the SL PRS resourceand where-the comb size KcombSL-PRSis provided by the higher layer parameter sl-PRS-CombSizeN-AndReOffsetfor a shared SL PRS resource pool and by the higher layer parameter sl-CombSizefor a dedicated SL PRS resource pool-the resource-element offset koffsetSL-PRS∈{0,1,…, KcombSL-PRS−1}-the frequency offset k 'is given by Table 8.4.1.6.3-1-the starting symbol lstartSL-PRSis provided by the higher-layer parameter sl-PRS-starting-symbolfor a dedicated SL PRS resource pool, or is determined such that the symbols {lstartSL-PRS,lstartSL-PRS+1,…,lstartSL-PRS+LSL−PRS−1} are mapped to the last consecutive LSL−PRSsymbols in the slot that can be used for SL PRS for a shared SL PRS resource pool as described in clause 8.2.4.1.1 in [6, TS38.214]-the number of symbols LSL-PRSis provided by the higher-layer parameter mNumberOfSymbolsfor a shared resource pool and by the higher layer parameter sl-NumberOfSymbolsfor a dedicated resource pool and limited to combinations {LSL-PRS, KcombSL-PRS}fulfilling -in a dedicated SL PRS resource pool: {1, 2}, {2, 2}, {2, 4}, {4, 4}, {6, 6}, and combinations with KcombSL-PRS∈{2,4,6}and LSL-PRS∈{3,4,…,9}where LSL-PRS>KcombSL-PRS-in a shared SL PRS resource pool: {1, 1}, {1, 2}, {2, 1}, {2, 2}, {2, 4}, {4, 1}, {4, 2}, {4, 4}-the antenna port p=6000The reference point for kis subcarrier 0 in common resource block 0.For transmission of an SL PRS in a dedicated SL PRS resource pool, the content of the OFDM symbol immediately preceding the SL PRS resource shall be generated based on 8.4.1.6.2 and mapped to resource elements with-the time-domain index l=lstartSL-PRS−1-the set of frequency-domain indices kshall be identical to those of the last OFDM symbol in the SL PRS resource -the amplitude scaling factor shall be same as the amplitude scaling factor βSL-PRSof the SL PRS resource.3GPP TS 38.211 V18.4.0 (2024-09)177(Release 18)
3GPPTable 8.4.1.6.3-1: The frequency offset k 'as a function of l−lstartSL-PRS.KcombSL-PRSSymbol number within the sidelink PRS resource l−lstartSL-PRS01234567810000000002010101010402130213060314250318.4.2Synchronization signals8.4.2.1Physical-layer sidelink synchronization identitiesThere are 672 unique physical-layer sidelink synchronization identities given byNIDSL=NID,1SL+336NID,2SLwhere NID,1SL∈{0,1,…,335}and NID,2SL∈{0,1}. The sidelink synchronization identities are divided into two sets, id_net consisting of NIDSL=0,1,…,335and id_oon consisting of NIDSL=336,337,…,671.8.4.2.2Sidelink primary synchronization signal8.4.2.2.1Sequence generationThe sequence dS-PSS(n)for the sidelink primary synchronization signal is defined by dS-PSS(n)=1−2x(m)m=(n+22+43NID,2SL)mod 1270≤n<127where x(i+7)=(x(i+4)+x(i))mod 2and[x(6)x(5)x(4)x(3)x(2)x(1)x(0)]=[1110110]8.4.2.2.2Mapping to physical resourcesMapping to physical resources is described in clause 8.4.3.8.4.2.3Sidelink secondary synchronization signal8.4.2.3.1Sequence generationThe sequence dS-SSS(n)for the sidelink secondary synchronization signal is defined by dS-SSS(n)=[1−2x0((n+m0)mod 127)] [1−2x1((n+m1)mod 127)]m0=15⌊NID,1SL112⌋+5NID,2SLm1=NID,1SLmod 1120≤n<127wherex0(i+7)=(x0(i+4)+x0(i))mod 2x1(i+7)=(x1(i+1)+x1(i))mod 2and3GPP TS 38.211 V18.4.0 (2024-09)178(Release 18)
3GPP[x0(6)x0(5)x0(4)x0(3)x0(2)x0(1)x0(0)]=[0000001][x1(6)x1(5)x1(4)x1(3)x1(2)x1(1)x1(0)]=[0000001]8.4.2.3.2Mapping to physical resourcesMapping to physical resources is described in clause 8.4.3.8.4.3S-SS/PSBCH block8.4.3.1Time-frequency structure of an S-SS/PSBCH blockIn the time domain, an S-SS/PSBCH block consists of NsymbS-SSBOFDM symbols, numbered in increasing order from 0 to NsymbS-SSB−1within the S-SS/PSBCH block, where S-PSS, S-SSS, and PSBCH with associated DM-RS are mapped to symbols as given by Table 8.4.3.1-1. The number of OFDM symbols in an S-SS/PSBCH block NsymbS-SSB=13for normal cyclic prefix and NsymbS-SSB=11for extended cyclic prefix. The first OFDM symbol in an S-SS/PSBCH block is the first OFDM symbol in the slot.In the frequency domain, an S-SS/PSBCH block consists of 132 contiguous subcarriers with the subcarriers numbered in increasing order from 0 to 131 within the sidelink S-SS/PSBCH block. The quantities kand lrepresent the frequency and time indices, respectively, within one sidelink S-SS/PSBCH block. For an S-SS/PSBCH block, the UE shall use -antenna port 4000 for transmission of S-PSS, S-SSS, PSBCH and DM-RS for PSBCH;-the same cyclic prefix length and subcarrier spacing for the S-PSS, S-SSS, PSBCH and DM-RS for PSBCH,Table 8.4.3.1-1: Resources within an S-SS/PSBCH block for S-PSS, S-SSS, PSBCH, and DM-RS. Channel or signalOFDM symbol number lrelative to the start of an S-SS/PSBCH blockSubcarrier number krelative to the start of an S-SS/PSBCH blockS-PSS1, 22, 3, …, 127, 128S-SSS3, 42, 3, …, 127, 128Set to zero1, 2, 3, 40, 1, 129, 130, 131PSBCH0, 5, 6, …, NsymbS-SSB−10, 1,…, 131DM-RS for PSBCH0, 5, 6, …, NsymbS-SSB−10, 4, 8, …., 1288.4.3.1.1Mapping of S-PSS within an S-SS/PSBCH blockThe sequence of symbols dS-PSS(0),…,dS-PSS(126)constituting the sidelink primary synchronization signal in one OFDM symbol shall be scaled by a factor βS-PSSto conform to the S-PSS power allocation specified in [5, TS 38.213] and mapped to resource elements (k ,l)p, μin increasing order of kin each of the symbols l, where kand lare given by Table 8.4.3.1-1 and represent the frequency and time indices, respectively, within one S-SS/PSBCH block.8.4.3.1.2Mapping of S-SSS within an S-SS/PSBCH blockThe sequence of symbols dS-SSS(0),…,dS-SSS(126)constituting the sidelink secondary synchronization signal in one OFDM symbol shall be scaled by a factor βS-SSSto conform to the S-SSS power allocation specified in [5, TS 38.213] and mapped to resource elements (k ,l)p, μin increasing order of kin each of the symbols l, where kand lare given by Table 8.4.3.1-1 and represent the frequency and time indices, respectively, within one S-SS/PSBCH block.3GPP TS 38.211 V18.4.0 (2024-09)179(Release 18)
3GPP8.4.3.1.3Mapping of PSBCH and DM-RS within an S-SS/PSBCH blockThe sequence of complex-valued symbols dPSBCH(0),…,dPSBCH(Msymb−1)constituting the physical sidelink broadcast channel shall be scaled by a factor βDMRSPSBCHto conform to the PSBCH power allocation specified in [5, TS 38.213] and mapped in sequence starting with dPSBCH(0)to resource elements (k ,l)p, μwhich meet all the following criteria:-they are not used for PSBCH demodulation reference signalsThe mapping to resource elements (k ,l)p, μnot reserved for PSBCH DM-RS shall be in increasing order of first the index kand then the indexl, where kand lrepresent the frequency and time indices, respectively, within one S-SS/PSBCH block and are given by Table 8.4.3.1-1.The sequence of complex-valued symbols r(0),…,r(33(NsymbS-SSB−4)−1)constituting the demodulation reference signals for the S-SS/PSBCH block shall be scaled by a factor of βDMRSPSBCHto conform to the PSBCH power allocation specified in [5, TS 38.213] and mapped to resource elements (k ,l)p, μin increasing order of first kand then lwhere kand lare given by Table 8.4.3.1-1 and represent the frequency and time indices, respectively, within one S-SS/PSBCH block.8.4.3.2Time location of an S-SS/PSBCH blockThe locations in the time domain where a UE shall monitor for a possible S-SS/PSBCH block are described in clause 16.1 of [5, TS 38.213].8.5TimingTransmission of a sidelink radio frame number ifrom the UE shall start (NTA ,SL+NTA ,offset)∙Tcseconds before the start of the corresponding timing reference frame at the UE. The UE is not required to receive sidelink or downlink transmissions earlier than the value of NTA ,offset, which is given in [12, TS 38.133], after the end of a sidelink transmission.For sidelink transmissions:If the UE has a serving cell fulfilling the S criterion according to clause 8.2 of [13, TS 38.304]-The timing of reference radio frame iequals that of downlink radio frame iin the cell with the same uplink carrier frequency as the sidelink and-NTA ,offsetis given by clause 4.3.1 of [TS 38.211],Otherwise -The timing of reference radio frame iand NTA ,offsetvalue are given by clause 12.2.2, 12.2.3, 12.2.4 or 12.2.5 of [12, TS 38.133]. Figure 8.5-1: Sidelink timing relationThe quantity NTA ,SLequals to 0.3GPP TS 38.211 V18.4.0 (2024-09)180(Release 18)
3GPPAnnex A (informative):Change history3GPP TS 38.211 V18.4.0 (2024-09)182(Release 18)
3GPPChange historyDateMeetingTDocCRRevCatSubject/CommentNew version2017-04RAN1#89R1-1708219Draft skeleton0.0.02017-05AH_1706R1-1711366Inclusion of agreements up to and including RAN1#890.0.12017-06AH_1706R1-1711886Updated editor's version0.0.22017-06AH_1706R1-1712004Clean version further to RAN1's endorsement0.1.02017-07AH_1706R1-1712011Inclusion of agreements up to and including RAN1 NR AdHoc #20.1.12017-08AH_1706R1-1712950Updated editor's version0.1.22017-08RAN1#90R1-1713296Updated editor's version0.1.32017-08RAN1#90R1-1714656Endorsed by RAN1#900.2.02017-08RAN1#90R1-1715321Inclusion of agreements from RAN1#900.2.12017-09RAN1#90R1-1715329Updated editor's version0.2.22017-09RAN#77RP-171994For information to plenary1.0.02017-09AH_1709R1-1716927Inclusion of agreements from AdHoc#31.0.12017-09AH_1709R1-1718318Updated editor's version1.0.22017-10RAN1#90bR1-1719105Endorsed by RAN1#90bis1.1.02017-10RAN1#90bR1-1719224Inclusion of agreements from RAN1#90bis1.1.12017-11RAN1#90bR1-1719685Updated editor's version1.1.22017-11RAN1#90bR1-1720850Updated editor's version1.1.32017-11RAN1#90bR1-1721048Endorsed by RAN1#90bis1.2.02017-12RAN1#91R1-17xxxxxInclusion of agreements from RAN1#911.2.12017-12RAN1#91R1-1721341Endorsed by RAN1#911.3.02017-12RAN#78RP-172284For approval by plenary2.0.02017-12RAN#78Approved by plenary – Rel-15 spec under change control15.0.02018-03RAN#79RP-1802000001-FCR capturing the Jan18 ad-hoc and RAN1#92 meeting agreements15.1.02018-06RAN#80RP-18117200021FCR to 38.211 capturing the RAN1#92bis and RAN1#93 meeting agreements15.2.02018-09RAN#81RP-1817890003-FCorrections according to agreements from RAN1#9415.3.02018-12RAN#82RP-18252300041FCombined CR of all essential corrections to 38.211 from RAN1#94bis and RAN1#9515.4.02019-03RAN#83RP-1904470005-FCR for PUCCH Format 115.5.02019-03RAN#83RP-1904470006-FCR on PDSCH mapping to virtual resource blocks15.5.02019-03RAN#83RP-19044700072FAlignment of terminology across specifications15.5.02019-03RAN#83RP-1904470008-FCorrection on physical resource mapping for PUSCH with configured grant15.5.02019-03RAN#83RP-19077300091FCorrection to frequency-domain starting position for SRS resource mapping15.5.02019-06RAN#84RP-1912810010-FCR on PUCCH format 115.6.02019-06RAN#84RP-1912810011-FCorrection on reference name of UE capability of additional DMRS for co-existence with LTE CRS15.6.02019-06RAN#84RP-1912810012-FCorrection on mapping from virtual to physical resource blocks15.6.02019-06RAN#84RP-19128100142FCorrections to 38.211 including alignment of terminology across specifications15.6.02019-06RAN#84RP-1912810015-FClarification regarding non-full-duplex UE communication15.6.02019-06RAN#84RP-1912810016-FCorrections on PUSCH scheduled by RAR UL grant and Msg3 PUSCH retransmission15.6.02019-09RAN#85RP-1919400017-FCorrection on PUSCH scrambling15.7.02019-09RAN#85RP-1919400018-FCorrection on PDSCH resource allocation scheduled by PDCCH in Type 0 common search space15.7.02019-09RAN#85RP-1919400019-FCorrections to 38.211 including alignment of terminology across specifications in RAN1#9815.7.02019-12RAN#86RP-1926240022-FCorrections to 38.211 including alignment of terminology across specifications in RAN1#98bis and RAN1#9915.8.02019-12RAN#86RP-19263400201BIntroduction of remote interference management16.0.02019-12RAN#86RP-1926350023-BIntroduction of two-step RACH16.0.02019-12RAN#86RP-1926360024-BIntroduction of NR-based access to unlicensed spectrum16.0.02019-12RAN#86RP-1926370025-BIntroduction of integrated access and backhaul for NR16.0.02019-12RAN#86RP-1926380026-BIntroduction of V2X16.0.02019-12RAN#86RP-1926390027-BIntroduction of eURLLC support16.0.02019-12RAN#86RP-1926410028-BIntroduction of MIMO enhancements16.0.02019-12RAN#86RP-1926430029-BIntroduction of NR positioning support16.0.02019-12RAN#86RP-1926460030-BIntroduction of enhanced support for dynamic spectrum sharing16.0.03GPP TS 38.211 V18.4.0 (2024-09)183(Release 18)
3GPP2019-12RAN#86RP-1926460031-BIntroduction of additional RACH configurations for TDD FR116.0.02019-12RAN#86RP-1926450032-BIntroduction of cross-carrier scheduling with different numerologies16.0.02020-03RAN#87-eRP-2001860033-FCorrections to integrated access and backhaul for NR16.1.02020-03RAN#87-eRP-2001920034-FCorrections to NR positioning support16.1.02020-03RAN#87-eRP-2001840035-FCorrections to two-step RACH16.1.02020-03RAN#87-eRP-2001940036-FCorrections to cross-carrier scheduling with different numerologies16.1.02020-03RAN#87-eRP-2001850037-FCorrections to NR-based access to unlicensed spectrum16.1.02020-03RAN#87-eRP-2001870038-FCorrections to V2X16.1.02020-03RAN#87-eRP-2001900039-FCorrections to MIMO enhancements16.1.02020-06RAN#88-eRP-20068700401FCorrections to NR-based access to unlicensed spectrum16.2.02020-06RAN#88-eRP-20069400411FCorrections to NR positioning support16.2.02020-06RAN#88-eRP-20069200421FCorrections to MIMO enhancements16.2.02020-06RAN#88-eRP-20068600431FCorrections to two-step RACH16.2.02020-06RAN#88-eRP-20069600441FCorrections to carrier aggregation with unaligned frame boundaries16.2.02020-06RAN#88-eRP-20068900451FCorrections to V2X16.2.02020-06RAN#88-eRP-20068800461FCorrections to integrated access and backhaul for NR16.2.02020-09RAN#89-eRP-2018040047-FCR on 2-step RACH for 38.21116.3.02020-09RAN#89-eRP-2018120048-FCR on correction half duplex operation during DAPS HO16.3.02020-09RAN#89-eRP-2018070049-FCorrections to V2X16.3.02020-09RAN#89-eRP-2018090050-FCorrections to MIMO enhancements16.3.02020-09RAN#89-eRP-2018110051-FCorrections to NR positioning support16.3.02020-09RAN#89-eRP-2018050052-FCorrections to NR-based access to unlicensed spectrum16.3.02020-12RAN#90-eRP-2023800053-FCR on the determination of DMRS sequences in 38.21116.4.02020-12RAN#90-eRP-2023830054-FCorrection on sidelink timing definition16.4.02020-12RAN#90-eRP-2023810055-FCorrection to UE assumption on RB set configuration for PRACH16.4.02020-12RAN#90-eRP-2023810057-FCR to 38.211 on NR-U PRACH RO configuration16.4.02020-12RAN#90-eRP-2023830058-FCorrections on sidelink for PHY layer structure16.4.02020-12RAN#90-eRP-2023830059-FCorrection on SL PT-RS sequence generation16.4.02020-12RAN#90-eRP-2023830060-FCorrection on PSFCH mapping16.4.02020-12RAN#90-eRP-2023870062-FCorrections to 38.211 for NR positioning16.4.02020-12RAN#90-eRP-2023810063-FCR to 38.211 to correct CP extension for SRS16.4.02020-12RAN#90-eRP-2023980064-FAlignment CR for TS 38.21116.4.02021-03RAN#91-eRP-2100490065-FCorrection on DM-RS presence with PDSCH mapping type B16.5.02021-03RAN#91-eRP-2100490066-FCorrection on usage of subCarrierSpacingCommon for unlicensed16.5.02021-03RAN#91-eRP-2100500067-FClarification on Sidelink SSID16.5.03GPP TS 38.211 V18.4.0 (2024-09)184(Release 18)
3GPP2021-03RAN#91-eRP-2100590068-FAlignment of notation16.5.02021-06RAN#92-eRP-2112480069-FCorrection on RIM RS resource and set ID mapping16.6.02021-06RAN#92-eRP-2112360070-FCorrection on channel inference assumption for PUSCH repetition Type B16.6.02021-06RAN#92-eRP-21124300711FAlignment of notation16.6.02021-06RAN#92-eRP-2112350072-FCorrection on OFDM signal generation and PSSCH DM-RS time-domain OCC in TS 38.21116.6.02021-06RAN#92-eRP-2112330074-ACorrection on channel properties assumption of UL transmission16.6.02021-09RAN#93-eRP-2118500076-FAlignment of notation16.7.02021-12RAN#94-eRP-2129580078-ACorrection to CCE-to-REG mapping and CSI-RS mapping16.8.02021-12RAN#94-eRP-2129600079-FCorrection to VRB-to-PRB mapping for DCI format 1_216.8.02021-12RAN#94-eRP-2129660080-BIntroduction of MIMO enhancements17.0.02021-12RAN#94-eRP-2129670081-BIntroduction of extensions to 71 GHz17.0.02021-12RAN#94-eRP-2129690082-BIntroduction of Non-Terrestrial Networks (NTN)17.0.02021-12RAN#94-eRP-2129730083-BIntroduction of coverage enhancements17.0.02021-12RAN#94-eRP-2129790084-BIntroduction of Multicast and Broadcast Services (MBS) support17.0.02021-12RAN#94-eRP-2129820085-BIntroduction of DL 1024QAM for NR FR117.0.02022-03RAN#95-eRP-22092000862CPi/2-BPSK specification updates for the merger of 5Gi into 3GPP17.1.02022-03RAN#95-eRP-2202450088-ACR on corrections on SL timing17.1.02022-03RAN#95-eRP-2202510089-FCorrections to NR in the 52.6 – 71 GHz range17.1.02022-03RAN#95-eRP-2202630090-FCorrections to NR support of multicast and broadcast services17.1.02022-03RAN#95-eRP-2202500091-FCorrections to MIMO enhancements17.1.02022-03RAN#95-eRP-2202520092-FCorrections to IIoT and URLLC enhancements17.1.02022-03RAN#95-eRP-2202530093-FCorrections to NR NTN support17.1.02022-03RAN#95-eRP-2202700094-FCorrections to small data transmissions in RRC_INACTIVE state17.1.02022-06RAN#96RP-2216060095-FCorrections on NR UE Power Saving Enhancements17.2.02022-06RAN#96RP-2216000096-FCorrections to MIMO enhancements17.2.02022-06RAN#96RP-2216030097-FCorrections to timing advance for NTN17.2.02022-06RAN#96RP-2216200099-AClarification of PUSCH DM-RS generation17.2.02022-09RAN#97-eRP-2224010100-FCorrection on the subcarrier offset, kssb17.3.02022-09RAN#97-eRP-2224060101-FCorrections on UE Power Saving Enhancements for NR in TS 38.21117.3.02022-09RAN#97-eRP-2224120102-FCorrections to NR support of multicast and broadcast services17.3.02022-12RAN#98-eRP-2228630103-FCorrection on sidelink timing17.4.02022-12RAN#98-eRP-2228640104-FCorrections to NR support of multicast and broadcast services17.4.02023-06RAN#100RP-23122601051FAlignment of parameter names17.5.02023-09RAN#101RP-2324490107-FAlignment of terminology across specifications17.6.03GPP TS 38.211 V18.4.0 (2024-09)185(Release 18)
3GPP2023-09RAN#101RP-2324690108-BIntroduction of NR sidelink evolution18.0.02023-09RAN#101RP-2324800109-BIntroduction of expanded and improved NR positioning18.0.02023-09RAN#101RP-2324580110-BIntroduction of MIMO evolution for downlink and uplink18.0.02023-09RAN#101RP-2324770111-BIntroduction of NR support for dedicated spectrum less than 5MHz for FR118.0.02023-09RAN#101RP-2324700112-BIntroduction of dynamic spectrum sharing enhancements18.0.02023-09RAN#101RP-2324710113-BIntroduction of multi-carrier enhancements18.0.02023-12RAN#102RP-2337220114-BIntroduction of additional PRS configurations [1symbol_PRS]18.1.02023-12RAN#102RP-2337070115-FCorrections to NR Dynamic Spectrum Sharing (DSS)18.1.02023-12RAN#102RP-2337160116-FCorrections to NR support for dedicated spectrum less than 5MHz for FR118.1.02023-12RAN#102RP-2337050117-FCorrections to MIMO enhancements18.1.02023-12RAN#102RP-2337180118-FCorrections to NR Network-controlled Repeaters18.1.02023-12RAN#102RP-2337190119-FCorrections to positioning enhancements18.1.02023-12RAN#102RP-2337330120-BIntroduction of multicast reception in RRC_INACTIVE18.1.02024-03RAN#103RP-2405180122-FCorrections to MIMO enhancements18.2.02024-03RAN#103RP-2405280123-FCorrections to positioning enhancements18.2.02024-03RAN#103RP-2405350125-AAlignment of parameter names18.2.02024-03RAN#103RP-2405190126-FCorrections to sidelink enhancements18.2.02024-06RAN#104RP-2410610127-FCorrection for hop counting in SRS for positioning with tx hopping18.3.02024-06RAN#104RP-2410750128-FCR for 38.211 on TRS occasions for idle/inactive UEs18.3.02024-06RAN#104RP-2410760129-BCR for TS 38.211 for introduction of FR2-NTN18.3.02024-06RAN#104RP-2410610130-FCorrections to positioning enhancements18.3.02024-06RAN#104RP-2410720131-FCorrections to sidelink enhancements18.3.02024-06RAN#104RP-2410590133-ACorrections to NTN operation18.3.02024-09RAN#105RP-2422090134-FCR on Precoding Matrices for 8TX UL MIMO Transmission18.4.02024-09RAN#105RP-2422050135-FCorrection on bandwidth part for SRS frequency hopping for positioning18.4.02024-09RAN#105RP-2422050136-FCorrection on staircase pattern for SRS frequency hopping for positioning18.4.02024-09RAN#105RP-2422100137-FCorrection on determination of restricted type for candidate cell PRACH transmission in LTM18.4.02024-09RAN#105RP-2422040138-FAlignment of parameter names18.4.02024-09RAN#105RP-2422030140-AAlignment of parameter names18.4.03GPP TS 38.211 V18.4.0 (2024-09)186(Release 18)