Lec8MECH222F-EulerianandLagrangianFrameshandout

.pdf
School
University of British Columbia**We aren't endorsed by this school
Course
MECH 222
Subject
Mechanical Engineering
Date
Jan 15, 2025
Pages
11
Uploaded by EarlKomodoDragon2782
Ref.: WikimediaMECH 222F – EULERIAN AND LAGRANGIAN
Background image
LECTURE OVERVIEW• EULERIAN FRAME OF REFERENCE• LAGRANGIAN FRAME OF REFERENCE• EULERIAN AND LAGRANGIAN DERIVATIVES
Background image
EULERIAN FRAMEYou are already familiar with the Eulerianframe of reference, but you call it something else:----Q: When we say that the wind speed measured by an anemometer is 10 m/s, is that an Eulerian measurement?LabframeInertialframeYE3
Background image
LAGRANGIAN FRAMEe.g. ping pong ball floating in a river࠵ౡ࠵?= 0࠵ౡ࠵?=1࠵ౡ࠵?=2The Lagrangianframe of reference is the frame of reference that follows the fluid as it moves:Ref. WalmartRef. Wikipedia
Background image
EULERIAN VERSUS LAGRANGIANQ: Can you give an example when you want to know what is happening in an Eulerian frame?Q: Can you give an example when you are interested in a Lagrangian frame?In general, it is only possible to relate Eulerian and Lagrangian frames for infinitesimal motions. For finite motions you have to integrate …·massflowratethroughpipe·windforcesonabuilding-dispersionofpollution
Background image
RELATING EULERIAN AND LAGRANGIAN FRAMESConsider a particle that moves with the fluid. Let’s start by considering a steady1D flow in the ࠵౥࠵?direction. Then, ࠵౉࠵?࠵౥࠵?,࠵౦࠵?,࠵౧࠵?,࠵ౡ࠵?=࠵ౢ࠵?(࠵౥࠵?):࠵౥࠵?࠵౥࠵?1࠵ౢ࠵?(࠵౥࠵?1)࠵౥࠵?2=࠵౥࠵?1+࠵ౢ࠵?࠵౥࠵?1࠵౑࠵?࠵ౡ࠵?࠵ౢ࠵?(࠵౥࠵?2)࠵౑࠵?࠵ౢ࠵?࠵౑࠵?࠵ౡ࠵?=࠵ౢ࠵?࠵౥࠵?2− ࠵ౢ࠵?(࠵౥࠵?1)࠵౑࠵?࠵ౡ࠵?=࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵౥࠵?×࠵ౢ࠵?࠵౥࠵?1࠵౑࠵?࠵ౡ࠵?࠵౑࠵?࠵ౡ࠵?=࠵ౢ࠵?࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵౥࠵?࠵ౢ࠵?࠵౥࠵?2=࠵ౢ࠵?࠵౥࠵?1+࠵༕࠵?࠵༕࠵?࠵༕࠵?࠵༕࠵?࠵౥࠵?2− ࠵౥࠵?1= ࠵ౢ࠵?࠵౥࠵?1+࠵༕࠵?࠵༕࠵?࠵༕࠵?࠵༕࠵?×࠵ౢ࠵?࠵౥࠵?1࠵౑࠵?࠵ౡ࠵?IimIst=0t=dt3m/s1-iit-definitionofderivativefluisisconnectedatspeed4(x,/LagranginEulerianderivativespace(followfluid)steadyIthefluidspeedCunsteady)fluidacceleratesconstant
Background image
Now, consider a particle that moves with the fluid but the fluid velocity is the same everywhere but varies with time, ࠵౉࠵?࠵౥࠵?,࠵౦࠵?,࠵౧࠵?,࠵ౡ࠵?=࠵ౢ࠵?(࠵ౡ࠵?):࠵౥࠵?࠵ౢ࠵?(࠵ౡ࠵?1)࠵ౢ࠵?(࠵ౡ࠵?2)࠵౑࠵?࠵ౢ࠵?࠵౑࠵?࠵ౡ࠵?=࠵ౢ࠵?࠵ౡ࠵?2− ࠵ౢ࠵?(࠵ౡ࠵?1)࠵౑࠵?࠵ౡ࠵?=࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵ౡ࠵?So, combining this result with the result on the previous slide, if a flow is 1D and unsteady, i.e. ࠵ౢ࠵?=࠵ౢ࠵?࠵౥࠵?,࠵ౡ࠵?, then:࠵౑࠵?࠵ౢ࠵?࠵౑࠵?࠵ౡ࠵?=࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵ౡ࠵?+࠵ౢ࠵?࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵౥࠵?Generalizing to 3D (steps are the same), i.e. ࠵ౢ࠵?=࠵ౢ࠵?࠵౥࠵?,࠵౦࠵?,࠵౧࠵?,࠵ౡ࠵?, then:࠵౑࠵?࠵ౢ࠵?࠵౑࠵?࠵ౡ࠵?=࠵ష࠵?࠵ౢ࠵?࠵ష࠵?࠵ౡ࠵?=࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵ౡ࠵?+࠵ౢ࠵?࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵౥࠵?+࠵ౣ࠵?࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵౦࠵?+࠵౤࠵?࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵౧࠵?RELATING EULERIAN AND LAGRANGIAN FRAMESLagrangianEuleriandevitativenotationforvagranginIIEulerian
Background image
DIFFERENTIAL EQUATION FORM OF RTTWe can also derive the same result using the chain rule:࠵౑࠵?࠵ౢ࠵?࠵౑࠵?࠵ౡ࠵?=࠵ష࠵?࠵ౢ࠵?࠵ష࠵?࠵ౡ࠵?=࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵ౡ࠵?+࠵ౢ࠵?࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵౥࠵?+࠵ౣ࠵?࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵౦࠵?+࠵౤࠵?࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵౧࠵?࠵౑࠵?࠵ౢ࠵?(࠵౥࠵?,࠵౦࠵?,࠵౧࠵?,࠵ౡ࠵?)࠵౑࠵?࠵ౡ࠵?=࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵౥࠵?࠵༕࠵?࠵౥࠵?࠵༕࠵?࠵ౡ࠵?+࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵౦࠵?࠵༕࠵?࠵౦࠵?࠵༕࠵?࠵ౡ࠵?+࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵౧࠵?࠵༕࠵?࠵౧࠵?࠵༕࠵?࠵ౡ࠵?+࠵༕࠵?࠵ౢ࠵?࠵༕࠵?࠵ౡ࠵?࠵༕࠵?࠵ౡ࠵?࠵༕࠵?࠵ౡ࠵?=࠵ౢ࠵?࠵༕࠵?࠵༕࠵?࠵༕࠵?࠵༕࠵?+࠵ౣ࠵?࠵༕࠵?࠵༕࠵?࠵༕࠵?࠵౦࠵?+࠵౤࠵?࠵༕࠵?࠵༕࠵?࠵༕࠵?࠵౧࠵?+࠵༕࠵?࠵༕࠵?࠵༕࠵?࠵༕࠵?࠵౑࠵?࠵ౣ࠵?࠵౑࠵?࠵ౡ࠵?=࠵ష࠵?࠵ౣ࠵?࠵ష࠵?࠵ౡ࠵?=࠵༕࠵?࠵ౣ࠵?࠵༕࠵?࠵ౡ࠵?+࠵ౢ࠵?࠵༕࠵?࠵ౣ࠵?࠵༕࠵?࠵౥࠵?+࠵ౣ࠵?࠵༕࠵?࠵ౣ࠵?࠵༕࠵?࠵౦࠵?+࠵౤࠵?࠵༕࠵?࠵ౣ࠵?࠵༕࠵?࠵౧࠵?࠵౑࠵?࠵౤࠵?࠵౑࠵?࠵ౡ࠵?=࠵ష࠵?࠵౤࠵?࠵ష࠵?࠵ౡ࠵?=࠵༕࠵?࠵౤࠵?࠵༕࠵?࠵ౡ࠵?+࠵ౢ࠵?࠵༕࠵?࠵౤࠵?࠵༕࠵?࠵౥࠵?+࠵ౣ࠵?࠵༕࠵?࠵౤࠵?࠵༕࠵?࠵౦࠵?+࠵౤࠵?࠵༕࠵?࠵౤࠵?࠵༕࠵?࠵౧࠵?In general, for any quantity ࠵ీ࠵?convected with the fluid: ࠵ష࠵?࠵ీ࠵?࠵ష࠵?࠵༕࠵?=࠵༕࠵?࠵ీ࠵?࠵༕࠵?࠵༕࠵?+࠵౉࠵? � ∇ ࠵ీ࠵?࠵ష࠵?࠵౉࠵?࠵ష࠵?࠵༕࠵?=࠵༕࠵?࠵౉࠵?࠵༕࠵?࠵༕࠵?+࠵౉࠵? � ∇࠵౉࠵?rateofchangeinfixedspaceh**00000
Background image
EXAMPLEA velocity field is given by ࠵౉࠵?࠵౥࠵?,࠵౦࠵?,࠵౧࠵?,࠵ౡ࠵?=3࠵౥࠵?࠵ౡ࠵?,2࠵౥࠵? − 3࠵౦࠵?+࠵౧࠵? − ࠵ౡ࠵?, 7࠵౥࠵?2࠵౦࠵?࠵౧࠵?3What is the acceleration of a fluid particle at ࠵౥࠵?,࠵౦࠵?,࠵౧࠵?,࠵ౡ࠵?= (1,2,3,4)?YVWInx-direction:d=B=+kw+wu+wbu-wibydz=3x+3ut(t)+12x-3y+2-490]+[7xyz37%)=3x+9x+2=3(1)+9(1)(4)=147my2voruberIny-direction:a*****iszI-+(3xt)(2)+(2x-3y+z-H(-3)+7xyz3(1)--I+6xt-6x+9y32+3t+7x2yz3=-+6(1)(4)-6(1)+9(2)-3(3)+3(4)+7(1)-()(35=416m/st·Allm
Background image
EXAMPLEA velocity field is given by ࠵౉࠵?࠵౥࠵?,࠵౦࠵?,࠵౧࠵?,࠵ౡ࠵?=3࠵౥࠵?࠵ౡ࠵?,2࠵౥࠵? − 3࠵౦࠵?+࠵౧࠵? − ࠵ౡ࠵?, 7࠵౥࠵?2࠵౦࠵?࠵౧࠵?3and the corresponding density variation is ࠵༌࠵?࠵౥࠵?,࠵౦࠵?,࠵౧࠵?,࠵ౡ࠵?=5࠵౥࠵?+2࠵౥࠵?࠵౦࠵? − 3࠵౥࠵?࠵౧࠵?࠵ౡ࠵?+2࠵ౡ࠵?.What can you say about the density of a fluid particle at ࠵౥࠵?,࠵౦࠵?,࠵౧࠵?,࠵ౡ࠵?= (1,2,3,4)?WWzu*=10=1+4+v6p+w6p--dtet5tSchdydz=-3xz+2+3xt(5+2y-327)+(2x-by+z-t)(2x)+7xyz3(3xt)=-3(1)(3)+2+3/)(4)(5+2(2)-3(3)(4))+(1-3(2)+3-4][2]+7(z)(3))-3(41)=-4877=-4877-==(- 3xz+2)+3xt(5+zy-3zt)+(2x-3y+z-t)(2x)+7xyz3)-3xt)=-3(1)(3)+2+3(1)(4)(5+2(2)-3(3)(4)+(2(1)-3(2)+3-4)(2)+7(2)(3)(-3(4))=-4877
Background image
RECAPWhat is an Eulerian frame of reference?What is a Lagrangian frame of reference?For anything, ࠵ీ࠵?, convected with the fluid: ࠵ష࠵?࠵ీ࠵?࠵ష࠵?࠵༕࠵?=࠵༕࠵?࠵ీ࠵?࠵༕࠵?࠵༕࠵?+࠵౉࠵? � ∇ ࠵ీ࠵?
Background image