Question3: Experiment 3 The unknown acid sample was 1 • Monoprotic Acid Trails Initial NaOH solution (mL) final NaOH solution (mL) The volume of NaOH to titrate the acid (mL) Amount of Unknown Acid sample 1 (g) The moles of the Unknown Acid (mol) Molar mass of the Unknown Acid (g/mol) A 3.38 28.31 24.93 0.150 0.0026 57.69 B 0.18 29.32 29.14 0.175 0.0029
The control in the experiment is water. Units used while timing the productivity of gas from an Alka-Seltzer tablet in different temperatures is, seconds. In order to find out if temperature controls the rate of chemical reaction, whether hot water is a more effective way to make the gas produce at a faster speed, it would be necessary to compare the results of different temperatures at the end of each trial. In order to do this the scientists will measure the volume of gas that is produced within a 10 second interval time after the tablet begins to react.
The hypothesis made, the density calculated in the experiment will stay the same because the density of the unidentified object will never change, was supported. The results support the hypothesis because in every trial the density always came out to 9g/mL. In trial one the mass was 71.16g, the volume was 8mL, and the density was 8.895g/mL, but when rounded to the proper sig fig came out to 9g/mL. In trial two the mass was 71.12g, the volume was 8mL, and the density was 8.89g/mL, but when rounded to the proper sig fig came out to 9g/mL. In trial three the mass was 71.14g, the volume was 8mL, and the density was 8.8925g/mL, but when rounded to the proper sig fig came out to 9g/mL. When averaged the mass was 71.14g, the volume was 8mL, and the density was 9g/mL. Errors that could have occurred are, not calculating the density correctly, not completely submerging the unidentified object with water in the graduated cylinder to get the volume, not rounding the sig figs correctly when finding the density, not measuring the unidentified object’s mass in grams, not measuring the unidentified object’s volume in milliliters, and not writing the correct units with the proper number or not the correct unit at all.
On January 18, 2015, the New England Patriots and the Indianapolis Colts played in the AFC Championship game in a chilly temperature of 51°F. The Patriots were accused of cheating when, at half time, 11 of their 12 game balls were found to be two pounds psi less than the regulation size of 12.5 to 13.5 psi. Although the balls are gauged 2 hours and 15 minutes prior to the game, they are returned to the teams before the game started. Based on extensive research and data, the Patriots’ balls were tampered with prior to the game. Objects with gaseous interiors have a tendency to decrease in pressure when exposed to cold temperatures but the decrease will only be minor.
The first experiment was a Synthesis reaction, this was done by burning the substance magnesium; the substances reacted to form one compound, which ended up being heavier than the first original mass of the magnesium, the final product was known as magnesium oxide. The second experiment that was conducted was the Decomposition reaction, which actually eliminated chemical elements by burning them off, therefore reducing the weight of the final product by 1.673 grams. The third experiment was known as single displacement, by adding the chemical hydrochloric acid to zinc it created a chemical reaction which actually increased the temperature, as well as the pressure within the flask. The last experiment that was conducted was known as double displacement, this experiment involved the exchange of bonds, between the two sodium hydroxide and nickel. The Nickel was forced to group together when it was placed into the sodium hydroxide, instead of mixing with the compound it would rather keep to
Once the material was acquired, 1.0094 grams of Aluminum were weighed and then transferred to a 250mL beaker. The 250mL beaker continued to remain in use for the next few steps. 1.4M KOH solution was added to the Aluminum sample that was previously obtained. For gas to escape the lab, there was a fume
Eudiometer Experiments in Elemental Effervescent Expansions Joe Williamson and Ethan Kang Mar 13, 2023 Purpose: The purpose of the gas laws lab was to calculate the volume of gas produced from a specific mass of magnesium ribbon. It also aims to use gas laws to determine the theoretical yield and volume of hydrogen gas produced at STP. Procedure: Gather Mg ribbon, string, a 2000-mL beaker, a Eudiometer, a 100-mL beaker, 50-60 mL distilled water, and HCl.
For this lab the knowledge to tell the difference between a chemical and physical changes was needed. To tell this the knowledge of the five signs of a chemical change was needed. These five signs are color change, odor change, production of bubbles/gas, production of heat/light, and the production of precipitate. Also prior to the lab one question was provided that needed to be answered. This question was what chemical must be present for a color change.
Based on the obtained results from the experiment, the unknown liquid was determined to be methanol. The results were very close to the theoretical values, all within 15.92 % error. In this experiment it showed that the methanol have different intermolecular forces at work and at different vapor pressures implying that the amount of intermolecular forces they exhibit affects the vapor pressure. Possible source of error that occurred throughout the experiment was that the temperature was hard to control leading to the variances between the temperature of the reading in the water bath and the actual temperature causing slight changes in the vapor
There will be less magnesium to react and release energy so the enthalpy of combustion will be lower. (i) Another source of error is the uncertainties and imprecisions of the lab equipment. Because of the simple calorimetry apparatus used during the process, heat may have been lost to the surroundings which results in inaccuracies in temperature and mass measurements. In addition, another source of error results from the temperature probe’s use as a stirring rod. (j) % difference =
Introduction The goal of this experiment was to acquire an understanding of the fundamentals of measurement in addition to analyzing the gathered data. During the experiment, an understanding of basic experimental error was gained as well as how to utilize the error equations to account for margins of error in each experiment. For Investigation 1, the mass, length and diameter of four separate cylinders was measured and utilized to calculate the volume and density of the cylinders. After recording these results in the table, the data of the cylinders was graphed. Then, in Investigation 2, a Geiger counter was utilized to measure background radiation in the lab at intervals of one minute for sixty minutes.
By conducting the Collecting Gas lab, it was determined that we had an actual yield of 0.0031 moles of H2 compared to a theoretical yield of 0.0030 moles of H2. By plugging in the actual and theoretical yield into the percent error formula, it was determined that there was a +3.33% error. In order to come to the conclusion of the +3.333% error, students had to complete a series of calculations. These calculations included: Converting the recorded room temperature from Celsius to Kelvin in order to plug the temperature value into the the ideal gas equation (PV = nRT). Converting the recorded room pressure from inches Hg to millimeters Hg in order to find the total pressure to plug into Pressure Conversion and Adjustment equation, which finds the pressure of H2.
To determine the rate of reaction there are many method to be used for example, measuring the mass after the product has been added and measuring the difference in mass on the duration of a digital scale. Another method, which will be used in this experiment is using a gas syringe to measure the volume of the gas which has been produced. The cylinder inside, will be pushed out to show a quantitative presentation of the volume produced by the reaction. Hypothesis
IV. Data and observations Mass of beaker (g) 174.01 Mass of beaker + NaOH pellets (g) 174.54 Mass of NaOH pellets 0.53 TRIAL 1 TRIAL 2 Mass of potassium acid phtalate (KHP) (g) 0.15 0.15 final buret reading (ml) 30.75
℃^(-1)×6.40℃±3.1 %=1337.6 J±4.06 % ∆H=(-1337.6 J±4.06 %) /(0.025 mol ±0.16 %)= -53504 J m〖ol〗^(-1)±4.22 % ∆H=-53504 J m〖ol〗^(-1)±4.22 %÷1000=-54 kJ m〖ol〗^(-1)±4.22 % Conclusion and