Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
The rates of reaction lab report
The rates of reaction lab report
Rates of reaction lab
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Lab 1 helps create a better understand of the changes in crystal structures when the annealing and quenching process is applied to 1020 and 1080 steel. The numbered steel refers to the ASTM grain-size number. Formula 1 is used to solve for the grain size. n=2^(G-1) Equation (1) at 100x magnification Crystal structures change shapes which changes the strength of the material and its properties. The metal might become soft, brittle, hard, or ductile.
Temperature: In this experiment, we will examine how the temperature affects the decomposition rate of a cough drop in water. There will be 3 different temperatures (cold, warm and hot) and all of the three experiment will be performed at the same time. Equipment: 3x Hot plates 3x Magnetic stirrers 3x 150 mL beakers 3x Cough drops 3x
Typical sample dimensions 9.51 × 4.83 mm2in surface area and1.58 mm in thickness were coated with conductive silver paint formetallic contacts. The dielectric constant of the sample was mea-sured for the applied frequency that varies from 100 Hz to 1 MHz atdifferent temperatures (40◦C, 60◦C, 80◦C). The observations weremade while cooling the sample. The dielectric constant εrwas cal-culated using the relation, εr =
4.1.6 Flip ops as Counters As can be seen from Figure 4.7 and Figure 4.8, a T-FF can be implemented using a D- FF feeding back the negate output /Q to the input D. The input clock to be divided is then provided at the CLK input. Cascading n T-FF stages as shown in Figure 4.8, it is 26 possible to divide the input frequency by a factor of 2^n . Based on current requirement Figure 4.7: FlipFlop of IC, size and availability and operating temperature, the rst combination which is the cascade of divide-by-4, divide-by-10 and divide-by-10 is chosen. The ip op as divide by 4, 10, 40 etc have been simulated with ADS.
Anderson and Wood (1925) determined a magnification value equal to 2800 but they neglected the deformation of the tungsten wire under different equilibrium situations. Conversely, the deformation of the wire could be sufficient to reduce the magnification factor of 30%, increasing the moment of inertia. For this reason Uhrhammer and Collins (1990) and Uhrhammer et al. (1996) recomputed the instrument static magnification (GS) that was estimated equal to 2080 ± 60. Using 2800 instead of 2080 in the BB WA simulations leads to a magnitude error of +0.129 (e.g. Uhrhammer et al., 2011).
19.386526 -67.45 -44.1 20.53525 -68.39 -44.1 21.75204 -68.56 -44.1 23.04093 -67.97 -44.1 24.406191 -67.25 -44.1 25.852348 -66.75 -44.1 27.384196 -66.66 -44.1 29.006812 -66.79 -44.1 11.54782 -67.25 -44.1 12.232071 -66.3 -44.1 12.956867 -65.38 -44.1 13.72461 -64.56 -44.1 14.537844 -64.01 Adrian Bersiks_bersik_Acoustic Analysis_Excel.xlsx-44.1 15.399265 -63.86 -44.1 From the figure above there are no interpolation points above the reference line, which means the frequencies were bounded nicely under the maximum amplitude, and the greatest amplitude was captured on the sampling interval exactly, with a closer distribution in amplitudes. Again the 130Hz drop is consistent. Looking at the Excel spreadsheet, the resposnse almost mimics the
Experiment 7 In this experiment we configured several DC circuits consisting of an emf and a network of resistors. The circuits were composed of a power supply, two DMMs, a circuit board, an SPST switch, and an assortment of known resistors along with one unknown resistor. We measured the current and voltage of the entire circuit as well as the potential drops across each resistor to determine the parameters of the circuit including the resistance, voltage, and current for each component.
Chapter 7 is to discuss the actual implementation and issues found during the experiment. The number of issues that were found during the project will be discussed in this chapter. Types of issues that will be discussed, are component issues, integration issues and construction issues. A cost summary of the components that were bought, will be shown in this chapter. 7.2 COMPONENT AND INTEGRATION
determine each pixel belongs to background or foreground. Wis the weights between the pattern and summationneurons, which are used to point out with which a pattern belongs to the background or foreground. They areupdated when each new value of a pixel at a certain position received by implementing the following function:Wt+1ib =fc(1−βNpn)Wib+MAtβ!(37)Wt+1i f=(1−Wt+1ib)(38)whereWtibis the weight between theith pattern neuron and the background summation neuron at timet,βisthe learning rate,Npnis the number of the pattern neurons of BNN,fcis the following function:fc(x)1,x>1x,x≤1(39)MAtindicates the neuron with the maximum response (activation potential) at frame t, according to:MAt1,f or neuron with maximum response0,otherwise(40)Function
V. EXPERIMENTAL SETUP & RESULTS The proposed dual T-NPC, dual PMSM topology and its modulation and control strategy are evaluated on an experimental setup as shown in Fig. 13. The experimental setup consists of two three-level T-NPC inverters feeding a dual three-phase 16 pole PMSM. The following capabilities of the proposed topology have been validated: 1) balancing DC-link voltages, 2) reduced output current distortion and 3) reducing capacitor RMS current.
(a) 3Mbps / 150Kbpa =3 X 1024 / 150 = 3072 / 150 =20.48 20 Users can be supported 150Kbps dedicated. (b)
1. A) Show that the relation R over bit strings where (x, y) is in R if and only bit strings x and y length 16 that agree on their last 4 bits is an equivalence relation. Define the equivalence classes and the partition induced by R. Answer: A relation R is said to be an equivalence relation if and only if it has all the following three properties: • Reflexive • Symmetric and • Transitive
Forces and Newton II Elias Ghantous PHYS 151 – Section NQ Thursday 10:10am Hasbrouck Lab Room 214 October 13, 2017 Abstract In this experiment, I studied how forces cause an object to accelerate. I also studied the relationship between force vectors, mass and acceleration. Gathering of data took place through the use of a force table and a PAScar track system.
Afterwards, for temperatures, 29°C, 37°C and 45°C, solutions were put into water bath to keep temperature constant. Measuring the
The results of the experiment had fluctuated based on the temperature of the solution. In reference to Table 1 and Table 2, the results was evident enough to identify the patterns and the trends when it came to using the temperature as an independent variable. The results predicted a trend that the higher the temperature, the higher the rate of reaction is. Whereas, the lower the temperature slowed down the rate of reaction.