Abstract: The purpose of this experiment was to identify given Unknown White Compound by conducting various test and learning how to use lab techniques. Tests that are used during this experiment were a flame test, ion test, pH test, and conductivity test. The results drawn from these tests confirmed the identity of the Unknown White Compound to be sodium acetate (NaC2H3O2) because there were no presence of ions and sodium has a strong persistent orange color. The compound then will be synthesized with the compounds Na2CO3 and HC2H3O2 to find percent yield.
Determining the Identity of an Unknown White Compound Maxwell Yurs Group Member: E.B. Floersch, Alexander Medina, and Masih Horri College Science and Engineering University of Minnesota, Minneapolis October 12, 2014 The experiments that were completed were used to determine the identity of an unknown white compound to allow for proper disposal. These experiments included flame tests, pH tests, and conductivity tests. After each was completed, it was found that the identity of the white compound was Sodium Nitrate.
The purpose of this experiment was to identify the two components of an unknown mixture through diverse experimental techniques such as recrystallization, extraction, melting point, and acid-base reactions. From this, the group to which these two compounds belong to had to be determined. These groups are: Carboxylic Acids, phenols, and neutrals. By determining the melting points of the two unknown compounds, these values were compared to the values of melting points in the chart and the proper compound was selected. For the case of this experiment, the unknown mixture contained, 4-methylbenzoic acid.
Dow's Unknown Substance Mystery 4 unknown substances have been stolen from Dow Inc. The substances are in plastic bags that we cannot open. We were given the task of figuring out what substances were stolen using the electronic balance, the compounds that were provided, and an empty plastic bag. We had to use those items because the Gas Chromatography-Mass Spectrometry was broken and a technician could not come out until next week. Consequently, using the resources provided, we determined that Substance 1 is NaCl, Substance 2 is K2SO4, Substance 3 is Na2CO3, and Substance 4 is NaC2H3O2.
Introduction A way to determine the molar mass of an unknown substance is to use other properties of that substance and solve for desired information. In this experiment, a colligative property, like the freezing point of an aqueous solution of the unknown substance, was used to find the molar mass of the substance. With the molar mass discovered, the identity of the substance was found. Material and Methods First, a Vernier temperature probe was attached to a plastic rod using rubber bands.
The goal of this experiment is to find out what is the identity of the unknown hydrate? To answer this question first, we should know what a hydrate, and how to identify a hydrate using the law of constant proportions. A hydrate is a pure substance because it contains water molecules embedded in its crystal structure that does not vary. By heating the unknown hydrate, we can calculate the mass of the hydrated, and the percentage of water in the hydrate.
On April 6, 2016 at approximately 11:45am, a local police station got a call about a hostage situation at a local pharmacy. When police and medical examiners got to each crime scene, they learned that all of the hostages were given drugs and had overdosed on them. Some of the pills, in powder form, were found near the victims. One of the victims was stable enough to tell the investigators that the power on the floor were the drugs they were forced to take. The medical examiner found out each hostage was given either unknown A or unknown B.
The lab started off by measuring critical materials for the lab: the mass of an an empty 100 mL beaker, mass of beaker and copper chloride together(52.30 g), and the mass of three iron nails(2.73 g). The goal of this experiment is to determine the number of moles of copper and iron that would be produced in the reaction of iron and copper(II) chloride, the ratio of moles of iron to moles of copper, and the percent yield of copper produced. 2.00 grams of copper(II) chloride was added in the beaker to mix with 15 mL of distilled water. Then, three dry nails are placed in the copper(II) chloride solution for approximately 25 minutes. The three nails have to be scraped clean by sandpaper to make the surface of the nail shiny; if the nails are not clean, then some unknown substances might accidentally mix into the reaction and cause variations of the result.
Exercise 14: Unknown Identification Lab Report The purpose of the study was to identify the unknown bacterium using various biochemical tests in addition to using scientific methods in determining the outcome of the hypothesis. Each biochemical test will help determine the bacteria based on specific characteristics of each organism. I was giving unknown number 232. The first procedure that needed to be done after obtaining unknown bacterial mixture was to isolate the two bacteria in a pure culture using the streak plate method described in Microbiology Laboratory Manual Eight Edition. The material used was trypticase soy agar (TSA) plate, nutrient plate, starch agar, hydrogen peroxide, iodine reagent and microscope.
Based on the obtained results from the experiment, the unknown liquid was determined to be methanol. The results were very close to the theoretical values, all within 15.92 % error. In this experiment it showed that the methanol have different intermolecular forces at work and at different vapor pressures implying that the amount of intermolecular forces they exhibit affects the vapor pressure. Possible source of error that occurred throughout the experiment was that the temperature was hard to control leading to the variances between the temperature of the reading in the water bath and the actual temperature causing slight changes in the vapor
Mystery Tube Purpose: In the Mystery Tube Lab, we were challenged to figure out what was going on inside the tube, figuring out how the strings were connected to one another inside that made them move in a certain way. Prediction: Our hypothesis was that there are three pieces of rope inside the tube, all being connected in a way that if one was pulled, the rest moves.
Breslyn (2016) explained that boiling point is when vapor pressure of a substance such as liquid is equal to the atmospheric pressure. Atmospheric pressure relates to the space of pressure above the liquid, whereas vapor pressure is defined as pressure that is created by the molecules changing from liquid to gas form, when these molecules change to gas they collide with air molecules. Boiling can take place after or
Volume and Temperature of a Gas By: Jasmine Camacho In this experiment I used both the Boyle’s and the Charles gas laws. Boyle's law states “the volume of a given quantity of a gas varies inversely as the pressure, the temperature remaining constant”. The formula used to help complete this process is PV=constant. Charles law help explain the relationship between temperature and gas volume.
Boyle’s law which states the relation between the pressure and the volume of a gas is inversely proportional; P1V1=P2V2, this is combined with Charles’s law which proves the relation between the volume and the temperature of a gas are proportional; V1/T1=V2/T2 and a third law called Avogadro’s law which describes the relation between the volume and the number of moles of a gas: V1/n1=V1/n1 to formulate the following Ideal gas Law; PV=nRT. Since we know the following formula: n= mass/molar mass, the Ideal Gas Law equation can be rearranged to M=
Eventually, the vapour contains only the most volatile substance and it is condensed and