In the round-bottom flask (100 mL), we placed p-aminobenzoic acid (1.2 g) and ethanol (12 mL). We swirled the mixture until the solid dissolved completely. We used Pasteur pipet to add concentrated sulfuric acid (1.0 mL) to the flask. We added boiling stone and assembled the reflux. Then, we did reflux for 75 minutes. After reflux, we removed the reaction mixture from the apparatus and cooled it for several minutes. We transferred the mixture to the beaker that contained water (30 mL). We cooled the mixture to room temperature and added sodium carbonate to neutralize the mixture. We added sodium carbonate until the pH of the mixture was 8. After neutralize, we collected benzocaine by vacuum filtration. We used a Buchner funnel to collect benzocaine. We used three 10 ml of water to wash the product. After the product was dry, we weighed, calculate the percent yield and determined the melting point of the product. …show more content…
Benzocaine was a common anesthetic. It did not suffuse well into tissue and was not water-soluble. It was used primarily in skin preparation. It was also an ingredient of many sunburn preparations1. The structure of benzocaine included an aromatic ring and amine group. The reaction to synthesize benzocaine was known as a Fisher esterification reaction. The Fisher esterification was reaction between alcohol and carboxylic acid in the presence of acid. The reaction was used to form an ester. In the experiment, sulfuric acid acted as a catalyst and necessary for this reaction to occur. There was a change between the –OH group of carboxylic acid to an –OCH2CH3 group in the reaction. It was a result of nucleophilic substitution