Purpose and Techniques:
This experiment has the aim to determine a chemical formula of hydrated compound, which ingrains cupper, chloride and water molecules in its structure. In order to find this hydrated compound, it is necessary to use the law of multiple proportions. In other word, finding the appropriate variables values to this compound (CxCly*zH2O). Additionally, two major steps are required to proceed the experiment. The first consists to heat a sample to liberate the water hydration, and then compare two mass weights before and after heating so gets easier to find the water percentage (mass). Second step consists in chemical processes with the sample that drives to determine the percentage of the other element.
Materials and chemical
…show more content…
Before starting the heating process, measure the weight of the crucible with its cover first and then tare the balance, and after that adding about 1 gram of the sample to the crucible with its cover, and then weigh it. Moreover, it is possible liberating harmful gases during the process of heating; therefore, being careful is important. The heating process ends when this sample changes the color to brown because water of hydration is removed to the sample. Additionally, give time to the small cool down and measure its weight. Next, transfer the sample to a 50 mL beaker and mixes with distilled water, which gets by rinsing the crucible with its cover in 8mL, so the solution is generated. After that, put an aluminum wire into the beaker, and after a certain period of time the solution gains color. To finish the reaction, 5 drops of 6M of Hydrochloric acid is added into the beaker to clean the solution, which means that acid dissolves all salts of aluminum that is on the solution. After finishing the chemical process, collect and use the Butcher funnel to wash the cooper because it is going to be used to a vacuum filtration. After finishing the filtration, measure the weight of the sample and dry it. Finally, Do again these two steps until notice that the subtractions of these masses are about 0.005 g, and then arrange all the chemical