Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Experiments involving catalase
Enzyme activity catalase experiment
Experiments involving catalase
Don’t take our word for it - see why 10 million students trust us with their essay needs.
As pH increases or decreases to get closer to the optimal pH --in this case it is 7 for this particular enzyme-- the rate of reaction peaks and is highest at that point, which is described by the molecular shape and structure of the enzyme at its optimal pH. When turnip peroxidase is at pH 7, the active site is able to fit perfectly with the substrate, therefore explaining why the reaction rate is fastest at this point. Accordingly, if the active site is disrupted, the substrate cannot fit perfectly causing the reaction rate to slow down. This can be supported by the data because the reaction rate gradually increased from pH 3 to pH 7 and reached its maximum at pH 7. Once it did reach the optimal pH, the reaction rate continuously decreased
Catalase Activity on Substrate Based On Gas Pressure Production Rate Name of the Class Author’s Name Date Enzymes are organic compounds which act as catalysts and speed up biological reactions in biological organisms. They are not destroyed or changed during the reaction but rather they are used over and over again to catalyze many more reactions. Their activity may be affected and altered by factors such as temperature, substrate concentration, enzyme concentration and Ph.
The purpose of this project is to further test the effect of pH levels, and how they affect the production of enzymes. The hypothesis for this experiment was the more basic the ph buffer the high the activity of the enzyme. The more acidic the pH buffer the less activity of the enzyme. The first time the experiment was done with only three pH levels that were tested. That helped find the range of pH levels that were needed to test the second time.
The objective of this lab was to determine the best pH level to increase enzyme activity. As this objective was met, it was discovered that water (pH level 7) was the best for percent absorbance. The hypothesis for this experiment was, “If peroxidase is an enzyme and therefore contains certain pH tolerances, then when placed in solution with pH levels of three, seven, and ten and the reaction is measured by a colorimeter, then water will be the optimal solution for maximum reaction rate.” As seen in the tables and graphs, the data supported the hypothesis due to the fact that most enzymes have an optimal pH of 4-9.
The effect of pH on the speed of enzyme interaction with substrate chemicals Hypothesis: About pH: If the pH level is less than 5, then the speed of the enzyme reaction will be slower. About temperature: If the temperature stays the same, then the speed of the enzyme reaction will not be completely affected. Background information: The function of enzymes is to speed up the biochemical reaction by lowering the activation energy, they do this by colliding with the substrate.
There are few vegetables and fruits that turns to the color brown if their surface is exposed to oxygen. Once the veggies or fruits been exposed to oxygen, then the browning begins to appear, and electrons and hydrogen will be removed. This happens because of an enzyme called catechol oxidase. The enzyme will act on its substrate catechol to form a yellow compound which then reacts with the oxygen in the air and change into benzoquinone. The more concentration of the enzyme, the more browning appears.
It was hypothesized that the optimal pH for the enzyme was pH 7 while the 1.0 ml peroxidase would have the best reaction rate. At the end of the experiment the results prove the hypothesis to be incorrect. INTRODUCTION Enzymes are proteins that allow a reaction to speed up. These proteins are made up of monomers known as amino acids.
For experiment A, we expected that the absorbance values for the baseline peroxidase reaction between guaiacol and hydrogen peroxide would increase over time. This would be due to the increase of color intensity from colorless to brown as the product becomes oxidized towards the end of the reaction. When compared to experiment B, we expected that as the enzyme concentration gets doubled, the absorbance values will increase faster than the baseline over time. The reason why is due to the double concentration of the enzyme that will allow for a better chance of binding to a substrate, which means that the reaction can occur faster. As for half the enzyme concentration, we expected that the absorbance values will increase but at a slower rate
After record your data and determine the absolute rate of the enzyme-catalyzed reaction. Based on the data and observations the hypothesis was accepted. It was accepted because when pH were changed to a variety of levels the transmittance began to get higher reaction rates. The increased absorbance means greater amount of product and a higher reaction rate will be produced.
The hirer the pH the greater the reaction. 5. Discuss in detail the general conditions necessary for affective enzyme action. Are the conditions the same for each enzyme? Why or why not?
Introduction: Enzymes are biological catalysts that increase the rate of a reaction without being chemically changed. Enzymes are globular proteins that contain an active site. A specific substrate binds to the active site of the enzyme chemically and structurally (4). Enzymes also increase the rate of a reaction by decreasing the activation energy for that reaction which is the minimum energy required for the reaction to take place (3). Multiple factors affect the activity of an enzyme (1).
Introduction In class, a series of experiments were performed that pertained to the enzyme known as catalase, which converts hydrogen peroxide into oxygen. Due to peroxide being toxic to the tissues of both plants and animals, both possess the enzyme catalase, which breaks into two non-toxic compounds: water and oxygen gas. Enzymes are proteins that react to certain substrates to create a product, and continue doing so afterwards. Methods and Materials To test reactions between catalase and hydrogen peroxide, groups of three to four people were formed.
Introduction 1.1 Aim: To determine the kinetic parameters, Vmax and Km, of the alkaline phosphatase enzyme through the determination of the optimum pH and temperature. 1.2 Theory and Principles (General Background): Enzymes are highly specific protein catalysts that are utilised in chemical reactions in biological systems.1 Enzymes, being catalysts, decrease the activation energy required to convert substrates to products. They do this by attaching to the substrate to form an intermediate; the substrate binds to the active site of the enzyme. Then, another or the same enzyme reacts with the intermediate to form the final product.2 The rate of enzyme-catalysed reactions is influenced by different environmental conditions, such as: concentration
ABSTRACT: The purpose of the experiments for week 5 and week 6 support each other in the further understanding of enzyme reactions. During week 5, the effects of a substrate and enzyme concentration on enzyme reaction rate was observed. Week 6, the effects of temperature and inhibitor on a reaction rate were monitored. For testing the effects of concentrations, we needed to use the table that was used in week 3, Cells.
In this experiment , we can prove that the temperature, pH and salt are the factors that will affect the structure and function of the enzyme as it is a kind of protein . Therefore, there may be an influence on the activity of enzyme which substrates cannot be binded on the active site if the amylase in too high or low ph and temperature and excess salt environment . On the other hand optimum ph and temperature and suitable salt concentration may favour the amylase activity . Reference : 1.2016, May 08). Effects of pH on Amylase Activity.