2. Add 8cm³ of sodium carbonate to each tube using a measuring cylinder. 3. Measure out the strontium nitrate for each boiling tube and add it (boiling tube 1 contains 1cm³, test tube 2 contains 2cm³ and so on). 4.
Weighed 1 gram of NaC2H3O2 and mixed it with ionized water. Boiled 12 mL of 1.0M Acetic Acid added into a beaker containing the sodium carbonate on a hot plate until all the liquid is evaporated
For this I needed to first obtain deionized water. I cleaned my large graduated cylinder and got 20 + or - 2 mL of deionized water. I then added this water to the beaker that contained the mixture I created from the last step of the experiment. I also gathered 2 boiling stones and added them to the mixture of the last step. I placed the beaker on a hot plate and heated it up to 130 degrees Celsius.
Objectives In this lab, you will investigate the percent composition by mass of CO2 in Alka-Seltzer® tablets. In addition, you will find out how much CO2 is released into the atmosphere as 2 Alka-Seltzer® tablets chemically react in vinegar. Procedure 250-mL beaker 100-mL graduated cylinder Scale 60 mL of Vinegar 2 Alka-Seltzer® tablets
Next, about 10 mL of both solutions, Red 40 and Blue 1, were added to a small beaker. The concentration of the stock solution were recorded, 52.1 ppm for Red 40 and 16.6 ppm for Blue 1. Then, using the volumetric pipette, 5 mL of each solution was transferred into a 10 mL volumetric flask, labelled either R1 or B1. Deionized water was added into the flask using a pipette until the solution level reached a line which indicated 10 mL. A cap for the flask was inserted and the flask was invented a few times to completely mix the solution. Then, the volumetric pipette was rinsed with fresh deionized water and
And the last test I conducted was the dissolved oxygen. The average amount of dissolved oxygen is nine and eight tenths ppm. A certain amount of oxygen is dissolved in bodies of water. The more velocity in the water, the more dissolved oxygen can be found in it. The higher the amount of dissolved oxygen in the body of water, the healthier it is.
Nitrates should be greater than or equal to one parts per million (ppm), phosphates should be less than or equal to .1 ppm, and the pH values should be about equal to seven. The dissolved oxygen in the river depends on the temperature, if the temperature is cooler than the dissolved oxygen levels will be higher, but the recommended amount of dissolved oxygen should be greater than or equal to five. For a healthy river the turbidity levels should be 120 centimeters
The anion tests followed the cation tests. To test for the presence of the chloride (Cl-) anion, a small scoop of the unknown compound was mixed with 1 mL of water in a test tube to create a solution. Then, 1 mL of 6 M nitric acid (HNO3) and 1 mL of silver nitrate (Ag(NO3)2) solution were added to the test tube to see if a white precipitate formed. To test for the presence of the sulfate (SO42-) anion, a small scoop of the unknown compound was mixed with 1 mL of water in a test tube to create a solution. Then, 1 mL of 6 M hydrochloric acid (HCl) and 1 mL of barium chloride (BaCl2) solution were added to the test tube to see if a white precipitate formed.
To do the temperature and dissolved oxygen tests, stick the probe in the water, and it will show numbers. One will be the dissolved oxygen in ppm (parts per million) and the other will be the temperature of the water. To do the pH test, stick the pH paper in the water and compare the color it turns to the scale. To test nitrates, put clear water in a container and dirty water in another, and put powder in them. Shake them and then compare the color they turn to the scale.
All organisms need oxygen to survive and when their is not enough oxygen, it leaves plants and animals to die. The area of water where there is a low count of oxygen are often called a dead zones. Also, an increase of the pH level in the water can be created because of algae blooms. The toxic killing algae can make humans sick. For the aquatic animals, these toxins attack mainly the organisms liver and nervous system (Nitrogen and
Next, a 100 mL graduated cylinder was used to measure 60 mL of distilled water. The water was added to the compound and stirred with a glass-stirring rod until dissolved. Next, The flame test required the solution made during the solubility test. The experiment needed a metal wire that was dipped into the solution
Once dissolved, fill the rest of the volumetric flask up to the line on the neck of the flask. Again mix the solution. Use four, 10mL volumetric flask, and label them from 1-4. Add approximately 2mL of copper sulfate pentahydrate into flask 1, 4mL to flask 2,
In the round-bottom flask (100 mL), we placed p-aminobenzoic acid (1.2 g) and ethanol (12 mL). We swirled the mixture until the solid dissolved completely. We used Pasteur pipet to add concentrated sulfuric acid (1.0 mL) to the flask. We added boiling stone and assembled the reflux. Then, we did reflux for 75 minutes.
Acids are proton donors in chemical reactions which increase the number of hydrogen ions in a solution while bases are proton acceptors in reactions which reduce the number of hydrogen ions in a solution. Therefore, an acidic solution has more hydrogen ions than a basic solution; and basic solution has more hydroxide ions than an acidic solution. Acid substances taste sour. They have a pH lower than 7 and turns blue litmus paper into red. Meanwhile, bases are slippery and taste bitter.
11) After you have prepared the dilutions, clean the outsides of the cuvettes with a paper towel. 12) Place the blank tube (tube 0) in the spectrophotometer. Since distilled water has no color it will not absorb any light so the absorbance number would be zero and this done to test the absorbance scale on the Spectrophotometer for the purpose of having it calibrated correctly. 13) Set the spectrometer to a wavelength of 530 nanometers. 14) Place the cuvettes (numbers 1-6) with the appropriate substance and record it’s reading in the data table.