First, the 250-mL graduated cylinder, 100-mL graduated cylinder, and the 10-mL graduated cylinder were observed to see the volume of the liquid in each one. Then, one digit further was estimated, and the results were recorded. After that, the 25-mL graduated cylinder and the 50-mL beaker were cleaned and dried. Next, their masses were measured on the scale, and the results were rounded to the nearest thousands decimal place. Subsequently, the Erlenmeyer flask was filled with 100 mL of distilled water. Using the thermometer, the temperature was measured and recorded. Then, the 25-mL graduated cylinder was filled with 25 mL of distilled water, and its mass was measured and recorded. The density of the water was found using the temperature and the Density of water index. Moreover, the calculated volume of water was calculated using the formula of density, and the difference between observed volume and calculated volume was found. This process was then repeated using the 50-mL beaker and the results were recorded. o Part B: …show more content…
Then, the pipet was rinsed with distilled water. The bulbs were then attached to the pipette; filling and dispensing water were practiced using both bulbs. Furthermore, the 250-mL beaker was weighed, and its mass was recorded. After that, the Erlenmeyer flask was filled with 100 mL of distilled water. The temperature was recorded. Using the pipette, 25 mL of the distilled water from the Erlenmeyer flask was filled and dispensed in the beaker. The mass of the beaker containing the water was measured and recorded. In addition, the volume of the water transferred was calculated using the mass and density from the Density of Water table. Finally, the difference between the observed and calculated volumes of water was