1815 Explosion
In 1815, Mount Tambora famously erupted, with the explosion being a 7 on the volcanic explosivity index, which easily made it the highest rated eruption since Lake Taupo in 1815. It is estimated that the eruption produced 160 cubic kilometres of magma. It is also estimated that at least 11 000 – 12 000 people died as a result of the actual eruption, while the total death toll is around 71 000, most of whom died from the consequences of the eruption. The magnitude of the 1815 eruption caused the worst famine in the 19th century due to the death of most agriculture and livestock in the northern hemisphere.
Subduction Zone
The reason for the explosive events of Mount Tambora all comes down to the concept of plate tectonics. Many
…show more content…
In both 1819 and 1880 there was an eruption rated a 2 on the volcanic explosivity index (VEI). The second of these eruptions involved lava flow and lava dome extrusion, while the first only had a central vent eruption and an explosive eruption. The third and latest eruption occurred in 1967 which was rated a 0 on the VEI and involved a central vent eruption and lava flow. Given these dates of eruption, the three major dormancy periods after 1815 were approximately 4 years, 61 years, and 87 …show more content…
The entirety of Mount Tambora was covered in flowing liquid fire. Additionally pumice stones rained down with diameters as large as 20cm. Pyroclastic flows reached the waterʼs edge on all sides of the 60km wide volcanic peninsula and the eruption column. Following this devastating eruption, there were smaller explosions, declining in intensity over the next few months. The recorded date of the final eruption is July 15 1815. In order to understand the materials ejected from the volcano, it is necessary to understand the different types of volcanic materials: lava flows, pyroclastic flows, and volcanic gases. Lava flows depend on the silica content, metal oxides, and the temperature of the lava. A pyroclastic flow is a combination of gases, ash, and rock that flow down the volcano at extremely high speeds (ex. 100km/hr) at extremely high temperatures (several hundred degrees Celsius). Volcanic gases consist of water, carbon dioxide, sulfur dioxide, and hydrogen sulfide and may be a part of magma. Over 160 cubic kilometres of magma was ejected from the volcano, which is the equivalent to 16000 Hiroshima bombs10, along with two hundred million tonnes of sulphur dioxide. The height of the eruption column reached the stratosphere, which is at an altitude of approximately 43km. Some of the coarser ash particles fell to the ground in the next few weeks,