Information from the computer system can be changed without a trace ,the scale of the data to be analysed is vast ,and the variety of datatypes is enormous. Forensic Data Analysis (FDA) is a branch of Digital forensics. It examines structured data with regard to incidents of financial crime. The aim is to discover and analyse patterns of fraudulent activities. Data from application systems or from their underlying databases is referred to as structured data.Unstructured data in contrast is taken from communication and office applications or from mobile devices. This data has no overarching structure and analysis thereof means applying keywords or mapping communication patterns. Analysis of unstructered data is usually referred to as Computer …show more content…
Suspects in murder cases routinely have their laptops and cell phones examined for corroborating evidence. Corporate litigation is also dominated by electronic discovery of incriminating material.
The second class of digital forensics cases are those in which the crime was inherently one involving computer systems, such as hacking. In these instances, investigators are often hampered by the technical sophistication of the systems and the massive amount of evidence to analyze.
Digital forensics is powerful because computer systems are windows into the past. Many retain vast quantities of information—either intentionally, in the form of log files and archives, or inadvertently, as a result of software that does not cleanly erase memory and files. As a result, investigators can frequently recover old email messages, chat logs, Google search terms, and other kinds of data that were created weeks, months or even years before. Such contemporaneous records can reveal an individual’s state of mind or intent at the time the crime was
…show more content…
Electronic data are easily changed, damaged, or erased if handled improperly. Simply turning on a consumer GPS may cause the device to delete critical evidence. Additionally, computers frequently harbor hidden evidence that may be revealed only when specialized tools are used—for example, a digital camera may appear to have 30 photos, but expert examination may show another 300 deleted photos that can be recovered. (When a device “erases” a file, it doesn’t clear the memory space, but notes that the space is available; the file may not be really deleted until a new one is written over it. Digital evidence can even be examined to show that something did not happen. Here they are less powerful, for the well-known reason that the absence of evidence is not the evidence of absence. These examples emphasize that the possibilites of digital forensics are bounded not by technology but by what is cost-effective for a particular case. Convictions are frequently the measure of success. In practice there is a considerable gap between what is theoretically possible and what is necessary; even though there may be an intellectual desire to analyze every last byte, there is rarely a reason to do