Thermometer Procedure: Fill the three beaker with water. - Beaker #1 will be filled with ice cold water (4c). - Beaker #2 will be filled with water at a room temperature (20c). - Beaker #3 will be filled with hot water (75c). Place a magnetic stirrer in each beaker.
To calculate the experimental mass the substance of each bag and the bag its self was measured using a balance. After gathering the mass subtract the mass of the empty bag to the mass of the unknown substance, in order to just have the mass of the substance. Afterward the mass of the unknown substance was divided by the number of moles recorded on the bag of the substance. The measurements are displayed on the table
Fill beaker with water Use the disposable pipette to place water in the graduated cylinder until the unidentified object would be completely submerged in water Record what the measurement of water in milliliters before placing the unidentified object into the graduated cylinder Gently place the unidentified object into the graduated cylinder Record the measurement of the water in milliliters after placing the unidentified object into the graduated cylinder Subtract the measurement of water in milliliters before placing the unidentified object into the graduated cylinder from the measurement of the water in milliliters after placing the unidentified object into the graduated cylinder, this is the volume of the unidentified object Record the volume (the answer you got in step 10) of the unidentified object in the data table Weigh the unidentified object on the scale, this is the mass of the unidentified object Record that number in the data table Calculate the density of the object by dividing the mass by the volume and rounding it to the proper significant figure, Record the density of the unidentified object in the data table Repeat the lab 2 more times and with each experiment record the data in the chart under the correct trial number corresponding with the correct
The lab started off by measuring critical materials for the lab: the mass of an an empty 100 mL beaker, mass of beaker and copper chloride together(52.30 g), and the mass of three iron nails(2.73 g). The goal of this experiment is to determine the number of moles of copper and iron that would be produced in the reaction of iron and copper(II) chloride, the ratio of moles of iron to moles of copper, and the percent yield of copper produced. 2.00 grams of copper(II) chloride was added in the beaker to mix with 15 mL of distilled water. Then, three dry nails are placed in the copper(II) chloride solution for approximately 25 minutes. The three nails have to be scraped clean by sandpaper to make the surface of the nail shiny; if the nails are not clean, then some unknown substances might accidentally mix into the reaction and cause variations of the result.
Dona Maria’s original mole recipe combines chile peppers, sugar, sesame seeds, soybean oil, crackers, peanuts, salt, cocoa and other flavors into the popular pre-made mole sauce. A popular dish made using the spicy chocolate sauce is a simple chicken mole, as outlined on Herdeztraditions.com. To make chicken mole, combine 1 teaspoon ground cumin and salt with one-half teaspoon of garlic powder and white pepper in a bowl. Coat eight chicken thighs with the spices and cook in oil using a deep skillet until brown.
Measure out 0.035 - 0.045g of magnesium ribbon and tie a string to it and record the mass of the ribbon. Pour 6 mL of HCl into the eudiometer. Carefully pour 50-60 mL of distilled water to fill up the rest of the eudiometer.
37.8 °C and 36.3 °C 30-40 °C 3. 41.7 °C and 40.2 ° C 40-50 °C 4. 50 °C and 48 ° C 50-60 °C Average temperatures: (37.8+36.3)/2=37.05 °C (41.7+40.2)/2=40.95 °C (50+48)/2=49 °C Table 1 -The values of experiment Temperature (°C) Density (kg/m3) 26.5 995 37.05 992.5 40.95 991 49 990 70 984.856 80 982.524 90 980.272 100 977.93 Table 2. The values in steam table Temperature (°C) Density (kg/m3)
Repeat steps 13-16 for two more trials to achieve precise data. Take your beaker of water (150 mL) or ice out of the freezer. Measure 50 mL of water and see if it is 10 degrees celsius (if the water’s temperature is more than 10 degrees celsius, leave it in the freezer longer. If the water is colder than 10 degrees celsius, leave it out to warm up).
This heating and cooling was repeated until there was very little (less than 0.0010 grams) fluctuation in numbers. Vial one had a start weight of 14.7681 and an end weight of 15.4098, meaning the mass of the water was 0.4658. Vial 2 had a start weight of 14.7451 and an end weight of 15.3833, meaning the mass of the water in this sample was 0.4633. The mass of the water was found by subtracting the mass of the vial with the hydrate (the start weight) from the mass after the final heating (the final weight). To then find the percent water divide the water mass by the hydrate mass and multiply by 100 since the number is a percent.
We zeroed out the scale and weighed all four potato cores at once and recorded the mass. We then put those potato cores into the beaker of 75 mL of solution. With the potato cores in the beaker we then put a watch glass over the top of the beaker to minimize the amount of solution that evaporates. We let the potato cores sit in the solution overnight. The next day we then emptied the beaker of the solution by carefully draining the solution, while not letting the potato cores fall out.
The items that were massed were the evaporating dish, watch glass, and NaCO3. The materials were massed once before and once after being heated in the drying oven. The mass of the evaporating Dish before was 46.57 g; while after being heating was 60.15 g. The mass of the watch glass before was 57.97 g and after was 48.75g. There were two masses taken for the substance NaHCO3- one with the evaporating dish and one without, subtracted out after the lab was concluded. The mass of the substance with the dish was 48.79 g before and 62.33 g after; meanwhile, the mass of the substance without the dish was 2.22 g before and 2.18 g after. The mass of the NaHCO3 had changed after the reaction occurred along with after it was placed on the hot plate and being in the drying oven.
Purpose This experiment is to determine the concentration of the solute copper sulfate pentahydrate, and the unknown solution, by passing different wavelengths of light through each solution. Procedure Weigh out approximately 5g of copper sulfate pentahydrate. Record the mass and place the solute into a 50 mL volumetric flask. Fill half of the flask with distilled water, add the stopper for the flask, and lightly shake the flask, until the copper sulfate pentahydrate fully dissolved.
INTRODUCTION A gas chromatograph (GC) can be utilized to analyze the contents of a sample quantitatively or in certain circumstances also qualitatively. In the case of preparative chromatography, a pure compound can be extracted from a mixture. The principle of gas chromatography can be explained as following: A micro syringe is used to inject a known volume of vaporous or liquid analyte into the head or entrance of a column whereby a stream of an inert gas acts a carrier (mobile phase). The column acts as a separator of individual or chemically similar components.
➢ Select the flask, and then choose 50 mL of crude oil from the Chemicals menu. Then, by selecting the flask and choose “Chemical Properties” option from dropdown. NOTE: Record the grams of gasoline, kerosene, and lubricating oils that are present in the 50 mL of crude oil. ➢ Select the flask, and choose Heating Mantel option afterward select Max Heat and make sure you record the temperature when you see crude oil begins to boil. ➢ When the crude oil begins to boil, Make sure you turn the temperature down to 60% by decreasing the heating metal two times.
Abstract The unknown concentration of benzoic acid used when titrated with standardized 0.1031M NaOH and the solubility was calculated at two different temperatures (20◦C and 30◦C). With the aid of the Van’t Hoff equation, the enthalpy of solution of benzoic acid at those temperatures was determined as 10.82 KJ. This compares well with the value of 10.27KJ found in the literature.