Pages 96-98 in Chemistry 110 Lab Manual. Wilfrid Laurier University, ON, Canada. Abstract: The purpose of this experiment was to determine the level of purity by using the values for melting point and absorbance and chemically synthesizing aspirin by using phosphoric acid as a catalyst.
Vacuum filtration was performed on the crude product, then it was recrystallized for purification. Melting point analysis was conducted on the recrystallized product to determine its identity. 3. The three possible mechanisms in this experiment were syn-addition
Characteristic property- Test 1- distillation Materials: Goggles, 250 ml beaker, 10 ml graduated
The data table provided below obtained melting point data for crude product, pure product, and mixture of the pure and 4-tert-butylbenzyl. 12. The TLC data obtained is provided in a table below. The TLC data was conducted solely in a 9:1 hexane/ethyl acetate solvent solution as opposed to the 1:1 and pure hexane solution as well. This was due to the lack of time, but as explained in number 7, a very polar solvent (1:1 solution) or non-polar solvent (pure hexane) is not ideal when obtaining
When each drop of chemical was carefully squeezed onto the surface of the lab table, the time of evaporation was timed carefully, capturing the exact times each of the substances completely finished evaporation. As a result of this, Acetone evaporated instantly, within just less than a minute, 57 seconds. Propanol and Acetic Acid followed a while afterward, with Propanol evaporating in 8 minutes and 40 seconds and Acetic Acid in 30 minutes and 43 seconds. The distinct and differing times of evaporation of all three chemicals represented the differences in the intermolecular forces that each of the chemicals possesses within their molecules and how they cause each substance to behave when left out to evaporate. Weaker intermolecular forces do not take long to fully evaporate because of the lack of energy required to weaken their bonds, hence Acetone takes less time to evaporate compared to Propanol and Acetic
Stoichiometry is a method used in chemistry that involves using relationships between reactants and products in a chemical reaction, to determine a desired quantitative data. The purpose of the lab was to devise a method to determine the percent composition of NaHCO3 in an unknown mixture of compounds NaHCO3 and Na2CO. Heating the mixture of these two compounds will cause a decomposition reaction. Solid NaHCO3 chemically decomposes into gaseous carbon dioxide and water, via the following reaction: 2NaHCO3(s) Na2CO3(s) + H2O(g) + CO2(g). The decomposition reaction was performed in a crucible and heated with a Bunsen burner.
Dehydration of 2-Methylcyclohexanol Sura Abedali Wednesday 2:00 PM January 31, 2018 Introduction: Dehydration reactions are important processes to convert alcohols into alkenes. It is a type of elimination reaction that removes an “-OH” group from one carbon molecule and a hydrogen from a neighboring carbon, thus releasing them as a water molecule (H2O) and forming a pi bond between the two carbons1. In this experiment, 2-methylcyclohexanol undergoes dehydration to form three possible products: methylenecylcohexane, 1-methylcyclohexene, and 3-methylcyclohexene in a Hickman still apparatus. Adding 85% Phosphoric Acid to protonates the “-OH” group, turning it into a better leaving group and initiating the dehydration reaction.
After obtaining an homogeneous mixture, the flask was placed in an ice bath during five minutes next to a graduated cylinder containing 5.0 mL of concentrated sulfuric acid. The temperature of the ice bath was recorded to be 1.1 °C. Likewise, a second graduated cylinder containing 1.8 mL of nitric acid and 2.5 mL of sulfuric acid was immersed in the cold ice bath to keep the three different solutions at the same temperature. Thereafter, the cold 5.0 mL of H2SO4 were added to the erlenmeyer flask containing the acetanilide solution, which remained in the cold water for approximately another 4 minutes.
Ali Atwi : Internal assesment – calculating of the concentration of ethanoic acid in vinegar AIM : To calculate the concentration of ethanoic acid CH3COOH in vinegar using stoichiometric equations, ( Yamaha brand ) Introduction : I personally like to add a little bit of vinegar on my food because it makes it taste better, yet I know that vinegar contains acid, and I also know the consequences of highly concentrated acid intake, like severe itching and stomach ache, vomiting. Venigar contains a small percentage of ethanoic acid Ch3COOH. This practical aims to find out the concentration of the of the vinegar against a standard solution of sodium hydroxide soloution of concentration 0.1 mol dm3 through acid-base titration, the label on the bottle says 6%.
The fractions in the fractional distillation such as N-hexane, isohexane, methyl cyclopentane have normal boiling point close to cyclohexane which makes the recovery of cyclohexane uneconomic and difficult. 2. Quantity of cyclohexane recovered is not enough to meet the current demand since the cyclohexane content of naphtha is about 5%- 15% by weight .3 Selection of Pathway to Cyclohexane (2) Hydrogenation of Benzene: C6H6 +3H2 →
In relation to a previous experiment in which the students determined the boiling points of two liquids, it was deduced that the boiling point of [propyl and methyl] alcohol was estimated to be around 80oC. According to numerous sources, ethanol boils (and consequently evaporates) at around 78.5oC[7] a much lower temperature compared to the alcoholic beverage’s other ingredients—water, for example, boils at precisely 100oC. It is immensely possible that because of this, ethanol is isolated from the beverage sooner than said beverage’s other components. Perhaps, if the students worked within
Rediet Legese iLab Week # 6 CRUDE OIL DISTILLATION Introduction: The aim of this week lab experiment is to experiment distill crude oil and to check how temperature determine the chemical properties of crude oil plus how the boiling point can also show physical properties. They are two major finding in this experiment. he first finding was the point at which the raw petroleum is heated to the point of boiling, at 275 0C, the gas and kerosene oil are refined, however the oil (lubricant ) stays as an unrefined feature oil.
The developing solution was poured into a tank and was tightly covered with a glass lid, and the tank was allowed to be saturated to ensure that the solution was equilibrated in the gas phase. Silica plate for TLC analysis: A horizontal line was drawn with a pencil on the plate and it was about 1 cm above the bottom of the plate. The horizontal line was drawn faintly so as to avoid damaging the silica gel on the plate. On the horizontal line, two marks were made and one was named A and the other B. These marks were made towards the centre of the plate at a distance apart because when spots are made at the edge of a plate, the result would be an improper travel of the samples as the solvent advances on the plate.
During the process a mixture is separated into several parts called fractions. Mixtures contain different substance with different boiling points, the differences in boiling points is the main reason fractional distillation is effective. The temperature at which a phase change occurs from liquid to vapor is the boiling point. Fractional distillation Column Fractional distillation column is a fractionating column used for separating a mixture into its various
This method which uses an internal standard and flame ionisation detector, is exact and more specific than methods usually used. The gas-liquid chromatography method determines ethanol clearly and separately from the other beverage components that would have interfered in other methods, without any distillation or need for a chemical reaction. Determination of ethanol is one of the most vital routine analysis in a current winery. This method provides frequent, rapid and accurate results are needed to regulate the quality of the wine from grape to bottle, as well as for state and federal government