The yellow solution containing the reactants was slowly poured into the beaker containing the cold water and the acid in order to cause the precipitation of the alcohol, 9-fluorenol and to destroy (hydrolyzed) the unreacted excess sodium borohydride. Subsequently, the white precipitate was vacuum filtered and washed twice with 20.0 ml portions of distilled cold water by pouring the liquid into the Buchner Funnel during filtration. It was necessary to wash the alcohol prior to recrystallization considering that the C-OH bond is easily broken by the formation of a stable and benzylic carbocation that favors the synthesis of difluorenyl ether. Finally, before the purification by recrystallization of the obtained product, the white solid alcohol was allowed to dry over a period of a
Benzyne Formation and the Diels-Alder Reaction Preparation of 1,2,3,4 Tetraphenylnaphthalene Aubree Edwards Purpose: 1,2,3,4-tetraphenylnaphthalene is prepared by first producing benzyne via the unstable diazonium salt. Then tetraphenylcyclopentadienone and benzyne undergo a diels-alder reaction to create 1,2,3,4-tetraphenylnaphthalene. Reactions: Procedure: The reaction mixture was created. Tetraphenylcyclopentadienone (0.1197g, 0.3113 mmol) a black solid powder, anthranilic acid ( 0.0482g, 0.3516 mmol) a yellowish sand, and 1,2-dimethoxyethane (1.2 ml) was added to a 5-ml conical vial.
The goal of experiment four was to use sodium dichromate to oxidize borneol to camphor. To purify the camphor use sublimation, then reduce camphor to isomeric alcohol isoborneol with sodium borohydride. Use the 1H NMR to determine the ratio of borneol to isoborneol in the final product. The experiment was carried out by using sodium dichromate to oxidize a borneol solution that was made with borneol and ethyl acetate. Once the reaction was complete the mixture was transferred into a separatory funnel where the ether and aqueous layers were separated and the aqueous layer was then extracted with two portions of ether.
A new oral pharmaceutical drug for type- two diabetes had been approved for clinical use, it was called Compound 17392. Marketing companies instantly wanted to have prescribers adopt and sell the product and researchers wanted to further investigate previous reports of liver toxicity in patients. Now since paying patients to try new pharmaceutical drugs was an issue due to it appearing to interfere with clinical judgement and upholding the duty to do what is best for the patient, a new idea of furthering research for the drug came into play. The idea included recruiting a group of physicians who were in the top ten percent of prescribers for type-two diabetes. Following regulations put in place by researchers, these physicians were to enter eligible patients into the trial for Compound
The objective of the Unknown White Compound experiment was to investigate the compound’s physical and chemical properties to correctly identify and then synthesize the compound. The first step was to test the compounds solubility and create a solution with distilled water. Next, a pH test was conducted by testing the unknown compound using pH paper. Following, the flame test was used to determine the cation and the ion test was used to determine the anion, which concluded the compound to mostly be potassium nitrate. Next, a conductivity probe and pH probe were used to confirm the unknown compound to be potassium nitrate.
Abstract – Methyl trans-cinnamate is an ester that contributes to the aroma of strawberry. It can be synthesized by an acid-catalyzed Fischer esterification of a methanol and trans-cinnamic acid under reflux. The solution was extracted to obtain the organic product, and evaporated residual solvent The yield was 68%, but there is some conflicting data regarding the purity. The melting point, IR, GC-MS indicate a highly pure desired product whereas 1H NMR shows there are unreacted reagents still present.
Identification of an Unknown Compound using Quantitative and Qualitative Analysis Lauren Tremaglio Chemistry 1011 Lab, Section 16 Instructor: Steven Belina October 3, 2014 Our signatures indicate that this document represents the work completed by our group this semester. Experimental Design and Discussion of Results The objective of this experiment was to identify an unknown compound through quantitative and qualitative analysis. In order to find the identity of the unknown compound, an initial qualitative test for solubility was performed.
Goals The primary goal of this experiment was to identify an unknown compound by running various tests to determine the qualitative solubility, conductivity, and pH value of the compound. Tests were also performed for the presence of specific cations and anions in the compound. The second goal was to discover the reactivity of the unknown compound by reacting it with different types of substances. The third goal of this project was to calculate the quantitative solubility of the unknown compound in water.
The goal of the experiment is to synthesize a bromohexane compound from 1-hexene and HBr(aq) under reflux conditions and use the silver nitrate and sodium iodide tests to determine if the product is a primary or secondary hydrocarbon. The heterogeneous reaction mixture contains 1-hexene, 48% HBr(aq), and tetrabutylammonium bromide and was heated to under reflux conditions. Heating under reflux means that the reaction mixture is heated at its boiling point so that the reaction can proceed at a faster rate. The attached reflux condenser allows volatile substances to return to the reaction flask so that no material is lost. Since alkenes are immiscible with concentrated HBr, tetrabutylammonium bromide is used as a phase-transfer catalyst.
Physically, the unknown compound was composed of white, grainy, crystal-like structures. The unknown was also odorless. From these observations, various physical and chemical testing was performed to determine properties of the unidentified compound. A series of solubility tests were performed, as shown in Table 2, and revealed that the unknown compound was soluble in water, but not in Acetone or Toluene.
The objective of this experiment was to use an aldol condensation reaction to synthesize 3-nitrochalcone from 3- nitrobenzaldehyde. This was accomplished with a Diels-Alder reaction that utilized 3-nitrobenzaldehyde, acetophenone, ethanol, and sodium hydroxide. The mechanism for the synthesis of 3-nitrochalcone is presented in Figures 1 and 2. The alpha carbon on the acetophenone is deprotonated. This is followed by the attack of the alpha carbon anion on the carbonyl carbon on the 3-nitrobenzaldehyde.
Abstract In this experiment, the reaction kinetics of the hydrolysis of t-butyl chloride, (CH3)3CCl, was studied. The experiment was to determine the rate constant of the reaction, as well as the effects of solvent composition on the rate of reaction. A 50/50 V/V isopropanol/water solvent mixture was prepared and 1cm3 of (CH3)3CCl was added. At specific instances, aliquots of the reaction mixture were withdrawn and quenched with acetone.
The reaction to synthesize benzocaine was known as a Fisher esterification reaction. The Fisher esterification was reaction between alcohol and carboxylic acid in the presence of acid. The reaction was used to form an ester. In the experiment, sulfuric acid acted as a catalyst and necessary for this reaction to occur. There was a change between the –OH group of carboxylic acid to an –OCH2CH3 group in the reaction.
Ali Atwi : Internal assesment – calculating of the concentration of ethanoic acid in vinegar AIM : To calculate the concentration of ethanoic acid CH3COOH in vinegar using stoichiometric equations, ( Yamaha brand ) Introduction : I personally like to add a little bit of vinegar on my food because it makes it taste better, yet I know that vinegar contains acid, and I also know the consequences of highly concentrated acid intake, like severe itching and stomach ache, vomiting. Venigar contains a small percentage of ethanoic acid Ch3COOH. This practical aims to find out the concentration of the of the vinegar against a standard solution of sodium hydroxide soloution of concentration 0.1 mol dm3 through acid-base titration, the label on the bottle says 6%.
Introduction Chevron Phillips Chemical Company is the major producer of Cyclohexane. This successful company hoses the three largest cyclohexane plants in the world. Many are puzzled by how the production of cyclohexane seems to have become stagnant. Perhaps this is due to the cost of benzene increasing or the demand increasing. Through thorough investigation, the answer to this question and many more can be answered.