Lab 1 helps create a better understand of the changes in crystal structures when the annealing and quenching process is applied to 1020 and 1080 steel. The numbered steel refers to the ASTM grain-size number. Formula 1 is used to solve for the grain size. n=2^(G-1) Equation (1) at 100x magnification Crystal structures change shapes which changes the strength of the material and its properties. The metal might become soft, brittle, hard, or ductile.
Our objective was to pick the best chemical to be used in a hand warm. This chemical had to be cheap, relatively safe, and must raise the temperature by 20oC and no more. We add 6 different chemicals to water we record the inshell temperature and then add one a the 6 chemicals to the water and record the temperature change of the water. We also add cold water hot water together to find how much heat would escape the calorimeter. We found that the calorimeter absorbed 71.1J/oC. Then this information to calculate the energy that was released by all of the chemical reaction.
For most sequences at position 4 and 5 we observe only the nucleotides G and T, respectively. There may be rare cases where other nucleotides may also be found. To consider such observations, we need to do a process called additive smoothing or Laplace smoothing to smooth the categorical data. [9] In this case, we add 4 sequences: AAAAAAAAA, CCCCCCCCC, GGGGGGGG, TTTTTTTTT.
I need to find the area of rectangle ABCD. I know that ABCD is a rectangle with diagonals intersecting at point E. Segment DE equals 4x-5, segment BC equals 2x+6, and segment AC equals 6x. I predict that To find the area of rectangle ABCD I need to find out the base and height of the rectangle. The first step is to find what x equals. Since I know the intersecting line segments AC and DB are congruent that means when I times the equation 4x-5 for segment DE by two it will equal the equation 6x for segment AC.
Typical sample dimensions 9.51 × 4.83 mm2in surface area and1.58 mm in thickness were coated with conductive silver paint formetallic contacts. The dielectric constant of the sample was mea-sured for the applied frequency that varies from 100 Hz to 1 MHz atdifferent temperatures (40◦C, 60◦C, 80◦C). The observations weremade while cooling the sample. The dielectric constant εrwas cal-culated using the relation, εr =
1. The test subjects will prepare for sleep by acquiring everything needed for the subjects’ sleep preferences. 2. The test subjects will all set alarms on their smartphones for approximately 6, 8, and 10 hours after the subjects’ enter the resting period (Subjects may wake during the resting period for the bathroom, but they must not stay awake for more than ten minutes at a time to prevent as much deviation as possible.). 3.
2.4 Band Division and Energy Computation: The power spectrum of the signal is multiplied by magnitude response of set of 33 triangular band pass filters and in the range 300Hz-2000Hz. Sub-bands are formed by using the logarithmic spacing. The positions of these filters are equally spaced along the Mel frequency, which is related to the common linear frequency f by following formula: Mel (f) = 1125* ln (1+f/700) (3) Mel frequency is proportional to the logarithm of linear frequency and which is close to the human perceptual system. 2.5 Sub Fingerprint Generation:
4.1.6 Flip ops as Counters As can be seen from Figure 4.7 and Figure 4.8, a T-FF can be implemented using a D- FF feeding back the negate output /Q to the input D. The input clock to be divided is then provided at the CLK input. Cascading n T-FF stages as shown in Figure 4.8, it is 26 possible to divide the input frequency by a factor of 2^n . Based on current requirement Figure 4.7: FlipFlop of IC, size and availability and operating temperature, the rst combination which is the cascade of divide-by-4, divide-by-10 and divide-by-10 is chosen. The ip op as divide by 4, 10, 40 etc have been simulated with ADS.
19.386526 -67.45 -44.1 20.53525 -68.39 -44.1 21.75204 -68.56 -44.1 23.04093 -67.97 -44.1 24.406191 -67.25 -44.1 25.852348 -66.75 -44.1 27.384196 -66.66 -44.1 29.006812 -66.79 -44.1 11.54782 -67.25 -44.1 12.232071 -66.3 -44.1 12.956867 -65.38 -44.1 13.72461 -64.56 -44.1 14.537844 -64.01 Adrian Bersiks_bersik_Acoustic Analysis_Excel.xlsx-44.1 15.399265 -63.86 -44.1 From the figure above there are no interpolation points above the reference line, which means the frequencies were bounded nicely under the maximum amplitude, and the greatest amplitude was captured on the sampling interval exactly, with a closer distribution in amplitudes. Again the 130Hz drop is consistent. Looking at the Excel spreadsheet, the resposnse almost mimics the
Chapter 7 is to discuss the actual implementation and issues found during the experiment. The number of issues that were found during the project will be discussed in this chapter. Types of issues that will be discussed, are component issues, integration issues and construction issues. A cost summary of the components that were bought, will be shown in this chapter. 7.2 COMPONENT AND INTEGRATION
1. Identify the range of senses involved in communication • Sight (visual communication), Touch (tactile communication), Taste, Hearing (auditory communication), Smell (olfactory communication) 2. Identify the limited range of wavelengths and named parts of the electromagnetic spectrum detected by humans and compare this range with those of THREE other named vertebrates and TWO named invertebrates. Figure 1: the electromagnetic spectrum source: www.ces.fau.edu Vertebrates Human Japanese Dace Fish Rattlesnake Zebra Finch Part of electromagnetic spectrum detected ROYGBV (visible light) detected by light sensitive cells in the eye called rods and cones.
V. EXPERIMENTAL SETUP & RESULTS The proposed dual T-NPC, dual PMSM topology and its modulation and control strategy are evaluated on an experimental setup as shown in Fig. 13. The experimental setup consists of two three-level T-NPC inverters feeding a dual three-phase 16 pole PMSM. The following capabilities of the proposed topology have been validated: 1) balancing DC-link voltages, 2) reduced output current distortion and 3) reducing capacitor RMS current.
Lab 1: Climate Change and the Scientific Method This lab’s topic is about applying the scientific method and pollen grains in past environments. The first step in the scientific method is to ask a question. For this lab, the question was, “Can pollen grains tell past environments climate?” The next step is to conduct research.
3. Introduction: This experiment was performed to determine whether colour has an influence on a person’s mood, blood pressure and pulse rate. People attach different meanings to different colours that may influence their emotions, blood pressure and pulse rate. Different coloured lights; blue, green, red, yellow and white (neutral) were used in a dark room and the participant’s blood pressure and pulse rate was monitored and recorded on an observation sheet to determine if colour has an influence on these variables.
In this experiment, the behaviour of water during boiling process is observed. When water is heated to boiling temperature at constant volume, different regimes are observed until it reaches to saturation pressure. If the pressure is above 1.013 bar, the water is supersaturated. The pressure at which boiling occurs is known as saturation pressure.