LABORATORY REPORT Activity: Enzyme Activity Name: Natalie Banc Instructor: Elizabeth Kraske Date: 09.26.2016 Predictions 1. Sucrase will have the greatest activity at pH 6 2. Sucrase will have the greatest activity at 50 °C (122 °F) 3.
The digestive system is responsible for chemically and mechanically breaking down food and includes organs such as, mouth, esophagus, stomach, small intestine, rectum, anus, and additional accessory organs. These organs all aid in the breakdown of food. Food is broken down mechanically by chewing and churning in the stomach, and chemically by acidic enzymes in the stomach and in the small intestine which receives enzymes from the pancreas that are specifically designed for the breakdown of nutrients. Once the food and nutrients are broken down, the excretory system removes whatever the body decides is waste by filtering blood in the nephrons of the kidneys and turning it into urine which is then collected in the bladder and removed from the body when the bladder is
LABORATORY REPORT Activity: Enzyme Activity Name: Natalie Banc Instructor: Elizabeth Kraske Date: 09.22.2016 Predictions 1. Sucrase will have the greatest activity at pH 6 2. Sucrase will have the greatest activity at 50 °C (122 °F) 3. Sucrase activity increases with increasing sucrose concentration Materials and Methods Effect of pH on Enzyme Activity 1. Dependent Variable amount of product (glucose and fructose) produced 2.
In this experiment, Analysis of Gaseous Products, a comparison between the elimination reactions created in the presence of an acidic and basic conditions was observed to be further analyzed through gas-liquid chromatography. These conditions were achieved by acid-catalyzed dehydration of a secondary and primary alcohol and based-induced dehydration of a secondary and primary bromide. As a result of these changing eliminations, gas-liquid chromatography makes it possible to separate and isolate volatile organic compounds to analyze the stereochemistry and regiochemistry of these compounds without decomposing them. Overall, gas-liquid chromatography of these compounds in acidic or basic conditions contributed in the identification and analysis
Joshua Miller 12/18/17 Fermentation Lab report Introduction The term fermentation refers to the chemical breakdown of a substance by bacteria, yeasts, or other microorganisms, typically involving effervescence and the giving off of heat (wikipedia). Sugars are converted to ethyl alcohol when fermentation happens. In this experiment we determined if yeast cells undergo fermentation when placed in a closed flask with no oxygen. Glucose and yeast are mixed together in a closed flask and allowed to incubate for about one hour.
There is also strong acid released by the glands in the lining of the stomach which helps break down food into a more useable form and also aids in the destruction of most ingested bacteria. After the contents have successfully been broken down they are released into the small intestine. The small intestine is a 22 foot long tube that helps to break down the food with enzymes released from the pancreas and bile released form the liver. In this organ the process of Peristalsis is at work, pushing the food further and further through the small intestine towards the colon. These movements are stimulated by the presence of chyme.
INTRODUCTION A gas chromatograph (GC) can be utilized to analyze the contents of a sample quantitatively or in certain circumstances also qualitatively. In the case of preparative chromatography, a pure compound can be extracted from a mixture. The principle of gas chromatography can be explained as following: A micro syringe is used to inject a known volume of vaporous or liquid analyte into the head or entrance of a column whereby a stream of an inert gas acts a carrier (mobile phase). The column acts as a separator of individual or chemically similar components.
Practical I: Acid-base equilibrium & pH of solutions Aims/Objectives: 1. To determine the pH range where the indicator changes colour. 2. To identify the suitable indicators for different titrations. 3.
Biochemical tests are the tests used for the identification of bacterial species based on the differences in the biochemical activities of different bacteria. Bacterial physiology differs from one species to the other. These differences in carbohydrate metabolism, protein metabolism, fat metabolism, production of certain enzymes and ability to utilize a particular compound help them to be identified by the biochemical tests. Gram’s stain was originally devised by histologist Hans Christian Gram in 1884. Gram-positive bacteria stain purple, while Gram-negative bacteria stain pink when subjected to Gram staining.