Plato's Realm Of The Forms

2313 Words10 Pages

Mary Richardson October 19th, 2014 Philosophy 220g Damnjanovic Paper: Throughout this paper I will demonstrate how Plato’s belief that there are two realms influences his conception of objects, knowledge, properties, and change, and how Aristotle’s belief in only one realm contrasts directly with that of Plato. Throughout Plato’s main works, he argues for the existence of two realms: one that we interact with on a daily basis in a tangible sense, known as the physical realm, and one that represents the ideal form of everything in our universe and which we think about in only an abstract sense, known as the realm of the forms. I will first explain how Plato’s philosophy affects his views of major defining elements, such as knowledge, properties, …show more content…

The true form of anything can be found in the realm of the forms, and can only be discovered through reason. The realm of the forms is unchanging, so, once a form is discovered through reason and this form has sufficient justification, the form itself will never change. For example, if every flower vase in the entire sensible world were to suddenly be destroyed, Plato would say that the form of the perfect flower vase would still exist, as once an object’s true form is discovered, it will not ever go away, be destroyed, or change. In the natural world, an object can be transformed as forms interact between each other, but the form itself has already achieved perfection and is its ideal state. So if a piece of wood was recycled to make paper, the form of paper and the form of wood remain the same, but physical object has been …show more content…

In general, natural science begins as observational data, or data acquired from experience in the physical realm. These observations have two possible outcomes, according to Plato. In the first case, it is possible to discern some regular mathematical structure and in this case gain true knowledge, and thus discovery of some true form, given the appropriate justification via systematic patterns that depend on the regularity of the observation. The second possibility is that irregularities in the observational data are too great to discern mathematical structure. For example, there may be too much complexity in the data, and in this case the inability to find an explainable underlying regular structure leaves us unable to attribute anything more than subjective reality to the data [Damnjanovic, lecture]. This means that nothing can be concluded as the observational data cannot be justified to a point that knowledge can be obtained. According to this, only the discovery of an underlying mathematical structure can prove the existence of natural science. In regards to common topics such as astronomy, natural phenomena can be known as a mathematical form, or not at all, as information from sense experience is intrinsically