Alka Seltzer mixture mainly consists of 3 active ingredients; aspirin, citric acid and sodium bicarbonate. The functions of the following components are as follows; Aspirin acts a pain reliever and as an anti-inflammatory (which reduces swelling and inflammation). It does this by preventing the action of a substance known as cyclo-oxygenase which produces chemicals in the body. Sodium hydrogen carbonate and citric acid neutralizes and reduces stomach acid when they react with water.
Pages 96-98 in Chemistry 110 Lab Manual. Wilfrid Laurier University, ON, Canada. Abstract: The purpose of this experiment was to determine the level of purity by using the values for melting point and absorbance and chemically synthesizing aspirin by using phosphoric acid as a catalyst.
The difference in this chemical and physical properties will aid in their separation. Processes like solubility, gravitational filtration and recrystallization will be used to separate the substances present in Panacetin. The melting and boiling point of the substances will help in concluding on which of these compounds will be presented at the end of experiment. Procedure and observation The Panacetin content was weighed approximately 3.0493g and transferred to the Erlenmeyer flask; 75ml of dichloromethane (CH¬2CL2) was added to the content. The dichloromethane (CH2Cl2) dissolved the sucrose, leaving the active unknown agent and aspirin behind.
We were able to eliminate certain ingredients like chlorpheniramine because this ingredient was the only neutral and the properties were not similar to the unknowns. The other team identified that the unknowns included all the ingredients except for the acetylsalicylic acid. They came up with their conclusions based off during the starch test both unknowns contained starch. They had different results than our team during the acetone solubility test. Team 2 found that both unknowns were acetone soluble, but our team found only unknown B was acetone soluble.
Abstract – Methyl trans-cinnamate is an ester that contributes to the aroma of strawberry. It can be synthesized by an acid-catalyzed Fischer esterification of a methanol and trans-cinnamic acid under reflux. The solution was extracted to obtain the organic product, and evaporated residual solvent The yield was 68%, but there is some conflicting data regarding the purity. The melting point, IR, GC-MS indicate a highly pure desired product whereas 1H NMR shows there are unreacted reagents still present.
The purpose of this experiment was to learn about the electrophilic aromatic substitution reactions that take place on benzene, and how the presence of substituents in the ring affect the orientation of the incoming electrophile. Using acetanilide, as the starting material, glacial acetic acid, sulfuric acid, and nitric acid were mixed and stirred to produce p-nitroacetanilide. In a 125 mL Erlenmeyer flask, 3.305 g of acetanilide were allowed to mix with 5.0 mL of glacial acetic acid. This mixture was warmed in a hot plate with constantly stirring at a lukewarm temperature so as to avoid excess heating. If this happens, the mixture boils and it would be necessary to start the experiment all over again.
Leah Romero 10/30/2017 Conclusion Lab 3 Chem 102L In lab 3, fundamentals of chromatography, the purpose was to examine how components of mixtures can be separated by taking advantage of different in physical properties. A huge process in this lab was paper chromatography, which was used to isolate food dyes that are found in different drink mixes. The different chromatograms of FD&C dyes were compared to identify which dyes are present in each of the mixes.
The main objective of this experiment was the formation of phenacetin from the synthesis of acetaminophen. This was done through a chemical reaction known as the Williamson ether synthesis using techniques of refluxing, vacuum filtration and recrystallization incorporating a mixed solvent system. A further objective of this experiment was to study the formation of the product (phenacetin). Such validation was completed by using techniques for determining the melting point, calculating percent yield, and IR (infrared spectroscopy) of the resultant product.
The melting point of the experimentally synthesized Aspirin product was found to be between 126-129 ˚C. This temperature range of initial to final melting point has a small and sharp temperature range of only 3˚C, which is within the acceptable limits of the 128-137˚C1 literature value for Aspirin (Acetylsalicylic Acid/2-acetoxybenzoic acid), if located slightly toward the beginning of the literature melting temperature range. Therefore, the narrow melting point range, which falls within the standard literature value range results, indicate the reliability purity of the sample. Had the melting point been higher than the literature value, but maintained a sharp melting point range, the compound could have still indicated a pure sample. A lower
The reaction to synthesize benzocaine was known as a Fisher esterification reaction. The Fisher esterification was reaction between alcohol and carboxylic acid in the presence of acid. The reaction was used to form an ester. In the experiment, sulfuric acid acted as a catalyst and necessary for this reaction to occur. There was a change between the –OH group of carboxylic acid to an –OCH2CH3 group in the reaction.
Aspirin is considered a “polydrug” due to its variety of uses stretching from pain-relief to disease prevention. Salicylic acid is derived from the bark and leaves of the willow tree. Salicylic acid belongs to a group of phytochemicals which have been shown to have positive effects on human health. Salicylic acid is a phenolic compound that can be found in a variety of plants and is a crystal organic carboxylic acid. However, it is more commonly viewed as the primary metabolite and active compound of acetyl salicylic acid, which has been used as an anti-inflammatory drug by physicians for over 100 years.
Cross Condensation of aldol 2015007632 Dowrie, K Contents Reaction 1 Introduction 1 Experiment Procedure 2 Experimental results 3 Table of calculations 3 Calculations 3 NMR 4 TLC 4 References 5 Reaction Introduction An aldehyde reaction is when aldehydes and keytones, both containing an α-hydrogen in the presence of an alkali group condenses and forms an enone. Acetone has α-hydrogens on each side. The proton can be removed and therefore giving a nucleophile anion. The aldehyde carbonyl is more reactive than the keytone and so it reacts rapidly with the anion.
Introduction The purpose of this experiment was to purify acetanilide that was contaminated with relatively small amounts of impurities using recrystallization. The success of recrystallization was dependent on a suitable solvent being chosen and proper recrystallization technique being carried out. The solvent chosen had to have a different polarity than that of the molecule of interest. The technique used was dependent on the solubility of the solvent at higher temperature and the solubility of the impurities at all temperatures.
Introduction The goal of the experiment is to examine how the rate of reaction between Hydrochloric acid and Sodium thiosulphate is affected by altering the concentrations. The concentration of Sodium thiosulfate will be altered by adding deionised water and decreasing the amount of Sodium thiosulphate. Once the Sodium thiosulphate has been tested several times. The effect of concentration on the rate of reaction can be examined in this experiment.
Purpose/Introduction The process of recrystallization is an important method of purifying a solid organic substance using a hot solution as a solvent. This method will allow the separation of impurities. We will analyze Benzoic Acid as it is dissolved and recrystallized in water and in a solvent of Methanol and water. Reaction/Summary