Basic pharmacology of agent used in the treatment of asthma Pharmacodynamics about Salbutamol (INN) or albuterol (USAN), a moderately selective beta (2)-receptor agonist similar in structure to terbutaline, is widely used as a bronchodilator to manage asthma and other chronic obstructive airway diseases. The R-isomer, levalbuterol, is responsible for bronchodilation while the S-isomer increases bronchial reactivity. The R-enantiomer is sold in its pure form as Levalbuterol. The manufacturer of levalbuterol, Sepracor, has implied (although not directly claimed) that the presence of only the R-enantiomer produces fewer side-effects. Mechanism of action Salbutamol is a beta (2)-adrenergic agonist and thus it stimulates beta (2)-adrenergic receptors. Binding of albuterol to beta (2)-receptors in the lungs results in relaxation of bronchial smooth muscles. It is believed that salbutamol increases cAMP production by activating adenylate cyclase, and the actions of salbutamol are mediated by cAMP. Increased intracellular cyclic AMP increases the activity of cAMP-dependent protein kinase A, which inhibits the phosphorylation of myosin and lowers intracellular calcium concentrations. A lowered intracellular calcium concentration leads to a smooth muscle relaxation and bronchodilation. In addition to bronchodilation, salbutamol inhibits the release of …show more content…
Uptake of oxygen from the air is the essential purpose of respiration, so oxygen supplementation is used in medicine. Treatment not only increases oxygen levels in the patient 's blood, but has the secondary effect of decreasing resistance to blood flow in many types of diseased lungs, easing work load on the heart. Oxygen therapy is used to treat emphysema, pneumonia, some heart disorders (congestive heart failure), some disorders that cause increased pulmonary artery pressure, and any disease that impairs the body 's ability to take up and use gaseous