Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Catalase and enzyme activity
Influence of ph on catalase activity
Catalase and enzyme activity
Don’t take our word for it - see why 10 million students trust us with their essay needs.
As pH increases or decreases to get closer to the optimal pH --in this case it is 7 for this particular enzyme-- the rate of reaction peaks and is highest at that point, which is described by the molecular shape and structure of the enzyme at its optimal pH. When turnip peroxidase is at pH 7, the active site is able to fit perfectly with the substrate, therefore explaining why the reaction rate is fastest at this point. Accordingly, if the active site is disrupted, the substrate cannot fit perfectly causing the reaction rate to slow down. This can be supported by the data because the reaction rate gradually increased from pH 3 to pH 7 and reached its maximum at pH 7. Once it did reach the optimal pH, the reaction rate continuously decreased
Introduction The organic compound catecholase is commonly found in plants and consists of two substrates called catechol and oxygen. When these substrates react with each other they form a brown color, often seen in vegetables and fruits left out after being cut open. (Wahlert and Holland, 1999) This reaction is why when a potato is cut open and left to sit, it will begin to brown.
The purpose of this project is to further test the effect of pH levels, and how they affect the production of enzymes. The hypothesis for this experiment was the more basic the ph buffer the high the activity of the enzyme. The more acidic the pH buffer the less activity of the enzyme. The first time the experiment was done with only three pH levels that were tested. That helped find the range of pH levels that were needed to test the second time.
The effect of pH on the speed of enzyme interaction with substrate chemicals Hypothesis: About pH: If the pH level is less than 5, then the speed of the enzyme reaction will be slower. About temperature: If the temperature stays the same, then the speed of the enzyme reaction will not be completely affected. Background information: The function of enzymes is to speed up the biochemical reaction by lowering the activation energy, they do this by colliding with the substrate.
LABORATORY REPORT Activity: Enzyme Activity Name: Natalie Banc Instructor: Elizabeth Kraske Date: 09.26.2016 Predictions 1. Sucrase will have the greatest activity at pH 6 2. Sucrase will have the greatest activity at 50 °C (122 °F) 3.
There are few vegetables and fruits that turns to the color brown if their surface is exposed to oxygen. Once the veggies or fruits been exposed to oxygen, then the browning begins to appear, and electrons and hydrogen will be removed. This happens because of an enzyme called catechol oxidase. The enzyme will act on its substrate catechol to form a yellow compound which then reacts with the oxygen in the air and change into benzoquinone. The more concentration of the enzyme, the more browning appears.
It was hypothesized that the optimal pH for the enzyme was pH 7 while the 1.0 ml peroxidase would have the best reaction rate. At the end of the experiment the results prove the hypothesis to be incorrect. INTRODUCTION Enzymes are proteins that allow a reaction to speed up. These proteins are made up of monomers known as amino acids.
LABORATORY REPORT Activity: Enzyme Activity Name: Natalie Banc Instructor: Elizabeth Kraske Date: 09.22.2016 Predictions 1. Sucrase will have the greatest activity at pH 6 2. Sucrase will have the greatest activity at 50 °C (122 °F) 3. Sucrase activity increases with increasing sucrose concentration Materials and Methods Effect of pH on Enzyme Activity 1. Dependent Variable amount of product (glucose and fructose) produced 2.
These factors include the pH and the temperature of the solution (1). Most enzymes have a preferred temperature and pH range (2). The preferred temperature for catalase falls between the ranges of thirty five to fifty degrees Celsius (4). Temperatures that are too high denature the enzyme and halt the enzyme’s activity (2). Catalase denatures starts to denature at fifty five degrees Celsius (2).
Introduction 1.1 Aim: To determine the kinetic parameters, Vmax and Km, of the alkaline phosphatase enzyme through the determination of the optimum pH and temperature. 1.2 Theory and Principles (General Background): Enzymes are highly specific protein catalysts that are utilised in chemical reactions in biological systems.1 Enzymes, being catalysts, decrease the activation energy required to convert substrates to products. They do this by attaching to the substrate to form an intermediate; the substrate binds to the active site of the enzyme. Then, another or the same enzyme reacts with the intermediate to form the final product.2 The rate of enzyme-catalysed reactions is influenced by different environmental conditions, such as: concentration
ABSTRACT: The purpose of the experiments for week 5 and week 6 support each other in the further understanding of enzyme reactions. During week 5, the effects of a substrate and enzyme concentration on enzyme reaction rate was observed. Week 6, the effects of temperature and inhibitor on a reaction rate were monitored. For testing the effects of concentrations, we needed to use the table that was used in week 3, Cells.
Introduction: Plant leaves contain many enzymes, and the rate of enzyme reaction differs with the concentration of the substrate present. One of the enzymes present in any plant’s leave is catalase. Catalase is an extremely reactive enzymes that do not need cellular reductants, as they usually catalyse a dismutase reaction (Mhamdi, Queval, Chaouch, Vanderauwera, Breusegem & Noctor 2010) One may find out the rate of catalase reaction through placing different plant leaves of the same species in different concentrations of hydrogen peroxide, and measuring the time taken for the leaf to flip over or counting the amount of oxygen bubbles produced in a set time. In this experiment, the rate of enzyme reaction was measured by measuring the time
This happens because enzymes lower the activation energy, as they provide an alternative reaction pathway. The decrease in the energy level aids in making the process happen faster (Jae In Lee, 2011) A catalase is an enzyme, which is found in all living organisms. This enzyme helps to convert hydrogen peroxide into oxygen and water. Chemical actions that happen within the cell produces hydrogen peroxide, which is poisonous and therefore can kill the organism.
sides. Every type of bacteria has a different morphology, it is important to distinguish it to aide in identifying bacteria. The last test that should be performed after reviewing the results of the streak plate is the Catalase test. This test is used to see if the bacteria produces catalase, which is an enzyme that breaks down hydrogen peroxide (H2O2) into H20 and O2.
If you conduct the catalyzed decomposition of hydrogen peroxide in a closed vessel, you will be able to determine the reaction rate as a function of the pressure increase in the vessel that is caused by the production of oxygen gas. If you vary the initial molar concentration of the H2O2 solution, the rate law for the reaction can also be determined. Finally, by conducting the reaction at different temperatures, the activation energy, Ea, can be calculated as heat is the energy source. Catalase is very efficient at decomposing hydrogen peroxide; one molecule of the enzyme can catalyse the conversion of over 6000,000 hydrogen peroxide molecules into water and oxygen every second. The enzyme occurs widely in tissues such as the liver and prevents accumulation of, and tissue damage by, hydrogen peroxide that is produced during metabolism.